Nuclear Physics in Astrophysics VIII

Contribution ID: 23 Type: Poster

7Li(a,g)11B: An update

Tuesday, 20 June 2017 19:30 (2 hours)

At the end of its life, a massive star collapses into a neutron star. The neutrino flux released during the collapse is so significant that the probability of a neutrino interacting with a nucleus is enhanced enough to have an influence on element nucleosynthesis [1]. The origins of light elements, specifically ^{11}B , is not fully understood. The ν -process has been proposed as a candidate for ^{11}B production [2]. Neutrino triggered reactions lead to the creation of ^{11}B , with the reaction $^{7}Li(\alpha,\gamma)^{11}B$ as a component of the main reaction chain. This reaction was recently studied at Notre Dame and the results of that measurement will be presented.

Primary author: Ms GILARDY, Gwenaelle (University of Notre Dame)

Co-authors: Mr SEYMOUR, Christopher (Notre Dame University); Mr LAMERE, Edward (Notre Dame University); Prof. GORRES, Joachim (Notre Dame University); Mr HOWARD, Kevin (Notre Dame University); Dr MACON, Kevin (Notre Dame University); Prof. COUDER, Manoel (Notre Dame University); Mr SKULSKI, Michael (Notre Dame University); Prof. WIESCHER, Michael (Notre Dame university); Prof. DEBOER, Richard J. (Notre Dame University)

Presenter: Ms GILARDY, Gwenaelle (University of Notre Dame)

Session Classification: Poster session