Study of the ²H(p,γ)³He reaction in the BigBang Nucleosynthesis energy range at LUNA

V. Mossa (for the LUNA collaboration)

viviana.mossa@ba.infn.it

Nuclear Physics in Astrophysics 8, NPA8: 18-23 June 2017 - Catania - Laboratori Nazionali del Sud

- Physics motivation for a new ²H(p,γ)³He measurement at BBN energies
- The ${}^{2}H(p,\gamma){}^{3}He$ reaction at LUNA
- I phase: the BGO setup
- II phase (on going maesurements): the HPGe setup
- Preliminary results
- Conclusions

PRIMORDIAL ABUNDANCE OF ²H:

• <u>Direct measurements</u>: observation of absorption lines in DLA system

$$\left[\frac{D}{H}\right]_{OBS} = (2.547 \pm 0.033) \cdot 10^{-5}$$

*R. Cooke at al., ApJ. 781 (2016) 31;

 <u>BBN theory</u>: from the cosmological parameters and the cross sections of the processes involved in ²H creation and destruction

$$\left.\frac{D}{H}\right|_{BBN} = (2.65 \pm 0.07) \cdot 10^{-5}$$

*E. Di Valentino et al., Phys. Rev. D 90 (2014) 023543

The error budget of computed abundance of deuterium is mainly due to the $d(p,\gamma)^3$ He reaction

Reaction	$\sigma_{^{2}\mathrm{H/H}} imes 10^{5}$
$p(n, \gamma)^2 \mathbf{H}$	± 0.002
$d(p, \gamma)^3$ He	± 0.062
$d(d, n)^3$ He	± 0.020
$d(d, p)^3 \mathrm{H}$	± 0.013

*E. Di Valentino et al., Phys. Rev. D 90 (2014) 023543

- Precise low energy data coming from LUNA 50 kV
- Only a single dataset is currently available at the BBN energy range with a systematic error of 9%
- No perfect agreement with recent «Ab-initio» calculations

The ${}^{2}H(p,\gamma){}^{3}He$ reaction is of high interest also in <u>theoretical nuclear physics</u>, in particular for what concern "ab-initio" modelling, as light nuclei are involved in this process

\mathbf{r}

There is a maximum discrepancy of 15% between theoretical predictions (red line) and the best fit of experimental data (blue band)

*Marcucci 2016 Phys. Rev. Lett. *Adelberger 2011 Rev. Mod. Phys.

The difference between theory and the data let some author to adopt the theoretical curve or the S-factor value obtained from measurement.

BBN provides a precise estimate of Baryon density $\Omega_{\rm b}$, through the comparison of $(D/H)_{\rm BBN}$ and $(D/H)_{\rm obs}$:

- Cross section measurement at 30keV<E_{cm}<300keV with ~5% accuracy
- Differential cross section measurement

- 2. Cosmology : measurement of N_{eff}
- Nuclear physics: comparison of data with "ab initio" predictions

The ²H(p,γ)³He *reaction at BBN energies at LUNA*

I phase: the BGO setup

- $E_{beam} \sim 50 300 \ keV$
- Energy resolution in the total absorption peak $\sim 8\%$
- $\sim 4\pi$ geometry
- High detection efficiency for 5.5 MeV γ -rays $\sim 62\%$

Efficiency calibration obtained with Monte Carlo simulations verified with radioactive sources (137 Cs, 60 Co, 88 Y) at low energy and with the resonant reaction 14 N(p, γ) 15 O at high energy

Good agreement between experimental data and Geant4 simulation:

¹⁴N(p, γ)¹⁵O reaction

In order to reduce the systematic error, the resonance position has been identified coupling the BGO with a collimated NaI

- $d(p,\gamma)^{3}$ He run
- Beam induced background run in vacuum at the same proton energy

Data analysis is on going to extrapolate the S-factor and to evaluate the systematics

II phase: the HPGe setup

- High energy resolution in the total absorption peak < 0.10%
- Possibility of performing angular distribution measurements with extended gas target (33 cm)

The set up is sensitive to the angular distribution

7556+0

Efficiency calibration \rightarrow coincidence between two γ rays emitted in cascade (decay $\gamma - \gamma$ angular correlation is well known) :

- ⁶⁰Co radioactive sources at low energy
- ${}^{14}N(p,\gamma){}^{15}O$ on the $E_R = 259$ keV resonance

$$\varepsilon = \frac{N_{Ge1}}{N_{Ge2}}$$

1.6±0.1 (6.2%)

- High precision 2 H(p, γ) 3 He cross section data in BBN energy range can put constraints on cosmological parameters
- As light nuclei are involved in this process, the ${}^{2}H(p, \gamma){}^{3}He$ reaction is of high interest also for theoretical nuclear physics ab-initio calculations
- BGO data taking completed and data analysis on going
- HPGe data taking on going
- The data we are currently collecting [30 300 keV] together with those previously acquired at LUNA 50 kV [2.5 22 keV] will provide a complete data set with high accuracy in a wide energy range