A novel radio-guided surgery technique with β - radiation

R. Faccini

University "La Sapienza" and INFN Rome Rome, 21/22 March 2016

SERVIZIO SANITARIO REGIONAL EMILIA-ROMAGNA Azienda Ospedaliera di Reggio Emilia Arcispedale S. Maria Nuova

Applied Radiation Physics Group@Sapienza

V. Bocci^(b), F. Collamati^(a,b), E. De Lucia^(e), R. Faccini ^(a,b), R. Donnarumma^(a,b), C. Mancini Terracciano^(a,b), M. Marafini^(c), I. Mattei^(e), S. Morganti^(b), S. Murri^(a,b), V. Patera^(b,c,d), L. Recchia^(b), A. Rucinski^(b,d), A. Sarti ^(d,e), A. Sciubba^(d,e), M. Senzacqua^(a,b), E. Solfaroli^(a,b), M. Toppi^(b,d), G. Traini^(a,b), C. Voena^(b)+ laurea students

(a)Dept. Physics "Sapienza"
(b)INFN RM1
(c)Centro Fermi
(d)Dept. SBAI "Sapienza"
(e)INFN Lab. Naz. Frascati (f)IIT

+ collaborations with Lab. Naz. Sud (CT), FLUKA (MI & CERN), CNAO (PV), GSI(D), Arcispedale Santa Maria Novella'(RE), Politenico, Dip. Bioignegneria, IRCCS Istituto Neurologico Carlo Besta, Istituto Europeo di Oncologia (MI), Policlinico Gemelli (RM)

Radio Guided Surgery

PET/SPECT scan to estimate receptivity and background

During surgery a probe is used to detect residuals/lymphnodes

Probe adjustable to needs

LIMITS OF **γ-RGS**

140 keV photons

➔ attenuation in body ~8cm

Long range of gamma's involve:

- exposure of medical personnel
- Background from healthy organs

Difficult to apply in:

- Brain tumors
- Abdominal tumors
- Pediatric tumors

A CHANGE IN PARADIGM

- Use of β^- tracers (electrons): pros
 - Detect electrons that travel ~100 times
 less than γ
 - Tracers with ⁹⁰Y can be used (already used for Molecular RT)
 - No background from gamma
 - Shorter time to have a response
 - » Smaller administered activity
 - Smaller and more versatile detector
 - Very reduced effect of nearby healthy tissues
 - Reduced dose to medical staff

E. Solfaroli Camillocci et al, Sci. Repts. 4,4401 (2014)

RESEARCH PATH

Low energy e- detector

p-terphenyl as scintillator

- High signal:
 - LY(pterf)=3LY(Anthracene)
- Low Z
 - Low sensitivity to photons
- Small attenuation length
 - λ=(4.73 ± 0.06) mm

Note: also in case of pure β - emitters gamma rejection is important because of brehmsstrahlung

Usually unused because signal attenuates if detector too thick

→ Not for low energy electrons

R. Faccini et al, **Properties of P-Terphenyl as detector for** α , β , and γ **radiation**, IEEE Trans. on Nucl. Sci. 2014; 61: 1483-7

Prototypes

- Core: cylindrical scintillator of p-terphenyl d=2.1mm, h=1.7mm
- encapsulated into a PVC ring to shield it against radiation coming from the sides;
- inserted as a tip inside an easy handling aluminum body.
- A thin black PVC cap makes the enclosure light tight.
- Two options for light collection:
 - Scintillating fiber and PMT
 - SiPM (SensL B/C-series)

Constraints on medical devices apply

Electronics Read-out

Electronics read-out is portable and customized to match the surgeon needs

- acoustic and visual alarm;
- wireless data transfer;

PC or tablet.

no connection with electrical line (bacteries)
user interface available both for the section of the se

No Danger of electric discharge on patient

RESEARCH PATH

E. Solfaroli Camillocci et al, J. Phys.: Conf. Ser. 620 012009(2015)

- Measure spatial sensitivity
- Gamma rejection
- Estimate performances on phantoms
- Estimate dose on surgeon

Estimated dose on surgeon administering 3MBq/kg: 1μSv/hr on surgeon's hands 0.13 μSv/hr on medical personnel

Sensitivity to Electrons

Scan with different

thicknesses of water

- Detection efficiency on ⁹⁰Sr point source
 – Rate 3.8·10⁵ cps/MBq.
 - ε_β=40%
- Scan in water
 - E_{β} >500keV.
 - Detection efficiency ϵ_{β} >80% in the β^{-90} Y energy range.

Background Rejection

Background is mainly due to photons coming from Bremsstrahlung.

Sensitivity to photons

Bremsstrahlung E_y spectrum

Almost transparent to Bremsstrahlung photons.

"Ad-hoc" Phantoms To simulate tumor remnant embedded in healthy tissue.

Tumor residual V=0.05ml

embedded in tissue with A/10

Motorized scans with S4-Probe

All the possible configurations of tumor residual embedded in healthy tissue.

10	1 10	10 1
Isolated Residual	Embedded Residual	Over Background
10 1	1 10	1 10
Complete Inclusion	Hidden&Inclusion	Hidden Residual

Active Spot Identification

Human Factor

To include the human factor in the test colleagues were asked to simulate the surgeon:

Phantoms simulating tumor remnants embedded in healthy tissue with different TNRs

All "surgeons" required at least 4-5 seconds per position to take a decision.

RESEARCH PATH

RESEARCH PATH

DOTATOC uptake in glioma

- DOTATOC is a somatostatin analog → known receptivity from NET .. but glioma?
- Even if TNR too low for therapy, can it be used for RGS?
- Use 68Ga-DOTATOC PET scans to estimate signal and background

F. Collamati et al, J Nucl Med 56 (2015) 3-8

Glioma vs Meningioma

Meningioma has a definitely larger uptake, but is the glioma one acceptable?

Use FLUKA simulation to translate from activities to false positive (FP) and false negative (FN) rates

Consider a residual identified if FP<1% and FN<5%

RGS for meningioma

Patient		W		, v		t min *	$A_{1s}^{min} * *$	Diagnosis	Previous
ID	Nles.	(kg)	(MBq)	(Hz)	(Hz)	(s)	(MBq/kg)		Treatment
M01	1	63	220	32.2	1.9	0.2	0.7	atypical	S
M02	1	80	160	17.6	2.6	0.6	1.9	atypical	S/RT/PRRT
M03	3	95	305	33.7	3.5	0.3	0.9	likely atypical	S/RT
				50.3	3.5	0.3	0.5		
				76.8	3.5	0.1	0.3		
M04	1	48	200	89.4	4.5	0.1	0.2	atypical	S/RT/CT
M05	3	57	130	66.7	4.4	0.2	0.3	relapse	S/RT/CT/PRRT
				53.2	4.4	0.2	0.5		
				57.6	4.4	0.2	0.4		
M06	2	90	145	107.6	1.8	0.1	0.1	unknown	PRRT
				56.1	1.8	0.2	0.4		
M07	1	74	237	50.2	3.9	0.2	0.5	anaplastic	S/RT
M08	3	105	223	55.7	3.6	0.2	0.5	atypical	S/RT
				31.2	3.6	0.2	0.9		
				29.6	3.6	0.4	0.9		
M09	2	48	145	13.4	2.4	0.9	2.7	atypical	S/RT
				15.1	2.4	0.7	2.5		
M10	1	70	240	14.6	1.2	0.6	1.8	atypical	S/RT
				12.6	1.2	0.8	1.9		
M11	1	75	220	12.7	3.8	1.6	5.0	atypical	unknown

- Very large uptake
- Can inject as low as 0.5 MBq/kg

* Time needed to detect 0.1 ml residual if 3MBq/kg are administered ** Activity that needs to be administered to achieve 1s response time

RGS for glioma

Patient ID	W (kg)	A _{adm} (MBq)	V (Hz)	v _{NT} (Hz)	$t_{probe}^{min} *$ (S)	$\begin{array}{c} A_{1s}^{min} & ** \\ (MBq/kg) \end{array}$	Diagnosis	Previous Treatment
G01	97	246	16.5	1.4	0.5	1.5	HGG	S/RT/CT/PRRT
G02	68	223	5.2	1.1	2.6	8.5	HGG	RT/CT/B
G03	80	152	9.6	1.9	1.4	4.3	HGG	S/RT/CT
G04	93	198	22.4	3.7	0.6	1.8	HGG	S/RT/CT/PRRT
G05	90	192	4.6	2.0	7.4	23.6	HGG	S/RT/CT/PRRT
G06	60	185	4.4	1.6	5.8	20.0	HGG	S/RT/CT
G07	63	194	4.8	1.7	5.1	17.6	HGG	S/RT/CT
G08	70	266	2.1	0.8	-	40.0	HGG	RT/CT
G09	85	255	3.7	1.1	5.3	17.6	HGG	S/RT/CT
G10	80	224	2.2	1.6	-	-	oligodendroglioma	S/RT/CT/I
G11	70	234	5.1	2.0	5.5	18.8	HGG	RT/CT
G12	15	38	5.0	2.0	5.9	18.8	pontine glioma	RT/CT/PRRT

- Needs to wait for ~6s, but it works
 - Margins to improve probe

* Time needed to detect 0.1 ml residual if 3MBq/kg are administered

** Activity that needs to be administered to achieve 1s response time

F. Collamati et al, J Nucl Med 56 (2015) 1501-6

Time Evolution of uptake

CONCLUSIONS:

- GEP-NETs (small bowel, insulinoma, ...) are a good candidate and similar among eachother
- the best SUV and TNR are achieved if surgery is 24hrs after injection

RESEARCH PATH

E. Solfaroli et al., submitted to JNM

Ex-vivo test on meningioma

• PET with Ga68 on Sep 14th

- Tumor SUV ~2g/ml (relatively low, but enough)
- TNR ~ 14 (good)

- 8mCi Y90—DOTATOC on Oct 9th
- Surgery on Oct 10th

Sample	''Diagnosis''
А	non-infiletered dura
В	Tumor upper margin
С	Tumor lower margin
D	Tumor Bulk
E	Medial dural border
F	Tumor center
G	Tumor center

The Samples

Evaluating the samples rate

26

Results

- Residuals as small as 0.2ml are visible
- Predictions with simulation are reliable (115 cps predicted, 105 observed)
- Healthy brain ~1cps (simulation) infiltrated dure can be identified

+ Confirmed very low exposure of medical personnell

Sample	V(ml)	R(cps)	histology		
Α	0.38	5.0	Dural tissue		
			infiltered by meningioma		
В	0.23	51.5	Transitional meningioma		
С	0.72	45.0	Transitional meningioma		
D	4.84	105.0	Transitional meningioma		
\mathbf{E}	0.88	3.5	Dural tissue infiltered by meningioma		
F	0.21	27.7	Transitional meningioma		
G	0.39	39.3	Transitional meningioma		
			with micronecrosis and occasional mitosis		

IRRADIATION MEASUREMENTS

0 counts even on surgical instruments!

....

RESEARCH PATH

Probe developments

 Use CMOS technology to lower energy threshold (with L. Servoli, INFN PG)→ allow use of other isotopes

- Matrix design for basic "imaging"

 Develop prototype for endoscopic (laparoscopy/Da Vinci ...) use
 Multichannel design with p-terphenil

30

Extension to other tumors: existing tracers

isotope	half Life	E gamma [keV]	% gamma	Endpoint beta- [keV]	% beta-
P32	343.2 h	0	0	1710	100
Ra223	273.4 h	400	2	0	0
Pb211	36.1 min			535 6	6.28
Tl207	4.7 min			1418 5	99.729
Sr89	1217 h	909	<1	1492	100
Re188	17 h	63	2	1962	25
Re188		155	15	2118	72
Re186	90.72 h	59	3	939	22
Re186		137	9	1077	72
Bi213	46 min	440	26	983	31
Bi213		0	0	1423	66
Dy165	2 h	0	0	1192	15.0
Dy165		0	0	1287	83.0
K42	12 h	1525	18	2001	18
K42		0	0	3525	82
Na24	15 h	472	99.95	1393	99.8
1131		365			
1131				606	90
Sm153	46.8 h	41	49	634	35
Sm153		47	12	703	44
Sm153		103	28	807	21
Kr85	4.48 h	151	75	840	79
Kr85		305	14	687	99

Either:

- Find other applications with Y90 (and somatostatine analogues)
- Use a tracer marked with one of the isotopes in the table, already known in nucl med

Extension to other tumors: new tracers

- Collaboration with Gemelli and Chemists@Sapienza to develop new tracers ongoing
- Radio-nuclides of interest:

Previous slide +

F18 also being explored

		E gamma		Endpoint	
isotope	half Life	[keV]	% gamma	beta- [keV]	% beta-
Si31	2.62 h	1266	<1	1491	100
I133	20.80 h	539	87	1227	83
Br83	2.4 h	529	1	935	99
In117	43 min	553	100	744	99

Isotopes of the same family as those already used in NM

Current Efforts

Synthesis of new radiotradiotracers (with ⁹⁰Y)

Monoclonal antibodies
 (NUMOTUZUMAR) for

(NIMOTUZUMAB) for EGFR receptors

• MIBG

Development of nano-scale carriers composed of polymers, antibody and ittrium

Nucl . Medicine and Chemistry

33

Current Efforts (II)

Setup the **whole chain** for radio-tracer development:

- cold synthesis
- hot synthesis
- in vitro tests
- animal tests
 - ightarrow equip a facility for

animal tests with radioactivity

 \rightarrow Need imaging capable to measure biodistribution of β emitting tracers \rightarrow SPECT with Brehmsstrahlung

Nucl . Medicine and Chemistry

34

Summary

Basic idea: no background from gamma allows for

- Shorter time to have a response
- A smaller and more versatile detector
- Much reduced noise from nearby healthy organs
- Reduced dose to medical staff

A translational research involving physics, chemistry, nuclear medicine, oncology and engineering we still have a long way to go

36

Riccardo.Faccini@roma1.infn.it