This work is supported by JSPS KAKENHI Grant Number 15K13478

Status of making ZnWO₄ crystals

Hiroyuki Sekiya Kamioka Observatory, ICRR, University of Tokyo Shunsuke Kurosawa, Akira Yoshikawa Research Lab. on Advanced Crystal Engineering, IMR, Tohoku University April 7 2016 CYGNUS-TPC Mini workshop @ INFN Frascati

ADAMO's report

Directional response with MeV alpha particles

Fig. 3 Dependence of the α/β ratio on energy of α particles measured with ZnWO₄ scintillator. The crystal was irradiated in the directions perpendicular to (010), (001) and (100) crystal planes (directions 1, 2 and 3, respectively). The anisotropic behaviour of the crystal is evident [99]

Eur. Phys. J. C (2013) 73:2276 DOI 10.1140/epjc/s10052-013-2276-2

The European Physical Journal C

Regular Article - Experimental Physics

On the potentiality of the ZnWO₄ anisotropic detectors to measure the directionality of Dark Matter

F. Cappella¹, R. Bernabei^{2,3,a}, P. Belli³, V. Caracciolo⁴, R. Cerulli⁴, F.A. Danevich⁵, A. d'Angelo^{1,6}, A. Di Marco^{2,3}, A. Incicchitti⁶, D.V. Poda⁵, V.I. Tretyak⁵

"Estimated" quenching factor @ 5keV

Table 2 Quenching factors for O, Zn and W ions with energy 5 keVfor different directions in $ZnWO_4$ crystal. Systematic uncertainties areestimated on the level of 20 % using data of [90]

Quenching factor		~30% difference	
dir. 1	dir. 2	dir. 3	
0.235	0.159	0.176	
0.084	0.054	0.060	
0.058	0.037	0.041	
	Quenching factor dir. 1 0.235 0.084 0.058	Quenching factor dir. 1 dir. 2 0.235 0.159 0.084 0.054 0.058 0.037	

In case of stilbene crystal

P.H. Heckmann et al., Z. Phys. 162 (1961) 122 HS et

Directional response with MeV alpha particles HS et al., Physics Letters B 571 (2003) 132

Measured quenching factor@40keV

only 7 % difference

Review of CYGNUS 2015

• 2 x 2 x 2 mm³ crystal made by Czochralski process

- At Tohoku University
- A 2mm cubic crystal was cut and polished.

Hiroyuki Sekiya

Response to ²⁴¹Am

- From -a axis direction, -b axis direction, and c axis direction
- ~12% difference in 5.5MeV α peaks, while 59.5keV peaks look same.

2mm crystal was too small

• Make it larger with Czochralski process

Monoclinic system

Atuchin + CGD 2011

Zn	~	200	.	•••
w				4
a		1		
				0

Ingredients	ZnO, WO ₃ (purity 99.99%)
Pull-up speed	0.5mm/h
Direction of the seed-crystal	C-axis
Purge gas	Ar+O2 (2%)
Rotation	12rpm

Hiroyuki Sekiya

What the crystal growth actually looks like

The obtained crystal

- Brownish crystal
 - oxygen deficiency
 - It is expected to be clear after adding annealing process

After cut and polish

• It is easy to be cleaved along the c-axis. – 9mm x 9mm x 9mm crystal was available.

> Crystal check by taking Laue pictures X-ray generator: RIGAKU RAD-IIC with Hamamatsu CCD

Other axes were also confirmed

Hiroyuki Sekiya

Directional dependence of the transparency?

Hiroyuki Sekiya

Setup for checking alpha response

• Hamamtsu R7600U-200 UBA PMT

R7600U-200

C=1000pF

Shaping time: 10 µsec

AMPTEK8000A

The result

- Maximum along c-axis, ~a and ~b are same.
- 37% difference for 5.5MeV alpha, 32% for 59.5keV X-ray

Conclusion

- ~40% anisotropic response for α particles was observed with this 9 x 9 x 9 mm³ sample.
- Similar response for X-ray was also observed.
 - This was not expected...
 - Systematics? True effect? Crystal dependence?
- Surface or bulk?
 - ¹³⁷Cs 662keV test is underway.
 - Neutron calibration is really needed!
- Needs more crystals/statistics.

Get more information of WIMP direction

• So far, 10 tons are needed

- Total energy deposit vs direction-dependent light output makes the sensitivity better
- Started discussion with AMoRE

Yong-Hamb Kim

ZnWO₄ or Stilbene

0 3

9 12 15 18

Hours on Dec. 3 2014

21 24