New DRIFT Results

Directional Recoil Identification From Tracks (DRIFT)

Occidental College
Dan Snowden-Ifft - PI

Colorado State
University
John Harton – PI

University of New MexicoDinesh Loomba - PI

Wellesley College
James Battat – Pl

University of Hawaii

Sven Vahsen – PI

Boulby Mine Sean Paling – PI

Introduction to DRIFT

- Directional Detector (PRD, 61 (2000) 1, NIMA, 600 (2009) 417, AstroPle, 31 (2009) 261)
- DRIFT has been operating in Boulby since 2001
- DRIFT-I -> DRIFT-II (a-e)
- DRIFT-IId volume = 0.8 m³, 40 Torr gas
- 50 cm drift region
- MWPC readouts (NIMA, **555** (2005)
 173)
- Negative CS₂ anion drift to limit diffusion (PRD, 61 (2000) 1)
- Phenomenal Compton background rejection (AstroPle, 28 (2007) 409)
- Many gas mixtures possible
- DRIFT-IId used a 30-10 Torr of CS₂-CF₄ to optimize for spin-dependent limits, 139 g target mass.

DRIFT-IId Data

CS2-CF4 Winter 09/10 Background Runs 47.4 days, 6152 events, 130 events per day

F equivalent recoil energy (keV)

- 47.4 days of live time recorded
- A background of 130 events per day found

AstroPle, **35**, (2012) 397.

Radon Progeny Recoils

AstroPle, 28, (2007) 409.

- Miraculously the guys at UNM managed to create a texturized 0.9 micron aluminized mylar thin film to replace the wire cathode.
- This means the alphas have "no place to hide."

- This has been deployed on DRIFT-IId in Boulby.
- The result was a drop from 130 events per day down to a few events per day.

- Miraculously the guys at UNM managed to create a texturized 0.9 micron aluminized mylar thin film to replace the wire cathode.
- This means the alphas have "no place to hide."

- This has been deployed on DRIFT-IId in Boulby.
- The result was a drop from 130 events per day down to a few events per day.

- Miraculously the guys at UNM managed to create a texturized 0.9 micron aluminized mylar thin film to replace the wire cathode.
- This means the alphas have "no place to hide."

- This has been deployed on DRIFT-IId in Boulby.
- The result was a drop from 130 events per day down to a few events per day.

- Miraculously the guys at UNM managed to create a texturized 0.9 micron aluminized mylar thin film to replace the wire cathode.
- This means the alphas have "no place to hide."

- This has been deployed on DRIFT-IId in Boulby.
- The result was a drop from 130 events per day down to a few events per day.

Discovery of Minority Carriers in Mixtures of CS₂ and O₂

Rev. Sci. Inst., **85**, (2014) 1.

Pellet Shielding

Shielded 30-10-1 CS₂-CF₄-O₂ Data

Nips vs PI z Background All Shielded, 433SumRisetime 54.7 days, 185 events, 3.38 +/- 0.2 events per day

- 54.7 days of data analyzed
- 185 events found but as expected all were located at 50 cm away from the detector, i.e. on the central cathode.
- Define a background-free fiducial region.
- In order to interpret this as a limit need to calibrate the detector...

Cf-252 Neutron Calibration Data

Nips vs PI z
Neutrons All Shielded, 433SumRisetime
0.803 days, 14240 events, 17700 +/- 100 events per day

- Exposed the detector to a CF-252 neutron source
- As expected the neutrons distributed themselves more or less uniformly in z within the fiducial region
- Since neither the distribution in z nor NIPs (ionization) is truly uniform need to do this carefully...

GEANT Cf-252 Simulation Data

Nips vs PI z
DRIFT_run14_merged_900M
9.4 days, 829259 events, 88200 +/- 100 events per day

- Careful GEANT work was done in Sheffield to model these Cf-252 exposures.
- Simulation is more than 10x data.
- Only a sample is shown.

GEANT Cf-252 Simulation Data

Nips vs PI z
DRIFT_run14_merged_900M
9.4 days, 829259 events, 88200 +/- 100 events per day

- Drew a fine grid in the *NIPs* vs z space.
- Counted the number of events in each bin.

Cf-252 Neutron Calibration Data

Nips vs PI z Neutrons All Shielded, 433SumRisetime 0.803 days, 14240 events, 17700 +/- 100 events per day

Did the same for the experimental data.

DRIFT-IId Detector Efficiency Map

- The ratio of Data/GEANT gives us nuclear recoil efficiency for each bin in this space.
- Red => 0%, White = 100%
- Take it out for a test run...

Unshielded Data

Nips vs PI z
Background All Unshielded, 433SumRisetime
45.4 days, 201 events, 4.43 +/- 0.3 events per day

- Detector pellet shielding was removed before and after the shielded runs.
- 45.4 days of data analyzed
- 14 events found in the fiducial region.
- With a long Co-60 run we have ruled out rock-gammas as a source of these events.
- These are rock-neutrons
 detected at a rate of 0.31
 +/- 0.03 (sys) +/- 0.08 (stat)
 events per day

Unshielded Simulation

Nips vs PI z
DRIFT_rock_run28_gypsum_unshielded_1100M
458 days, 697 events, 1.52 +/- 0.06 events per day

- Sheffield simulated neutrons generated in the walls of the cavern and then tracked them into the detector.
- The GEANT data were then gridded and counted.
- This data was then multiplied by the efficiency map to give detected events.
- GEANT = 0.25 +/ 0.02 events per day
- Data = 0.31 +/- 0.03 (sys) +/ 0.08 (stat) events per day
- Good agreement!

Unshielded Data

Nips vs PI z 100 GeV WIMPs on F 54.7 days, 700 events, 3.22 +/- 0.3 events per day

- Simulated WIMP events are created, binned, multiplied by the efficiency map to give detected WIMP rates.
- The resulting detected rate => cross-section limits.

SD Limits

SI Limits

Spin-Independent WIMP Limits

Head-tail analysis

- DRIFT sensitivity to HT in the new gas mode was investigated.
- Method of extracting the HT parameter from data has been discussed for DRIFT in Astropart. Phy., 31 (2009) 261.
- Analyzed 7 days of directed source neutron data.
- Event by event measurement of the HT parameter was done using η_1 to η_2 ratio.
- Can now study HT z, thanks to fiducialization.

Head-tail results

- Improved HT sensitivity (as expected) due to longer recoil tracks from C and F-recoil components in this data set compared to shorter S-recoils in the old data.
- HT sensitivity at lower energy is due to lower hardware and analysis thresholds.
- HT paper in preparation.

- **Blue circle points**: New results including C and F-recoil components.
- Black triangle points: Results obtained with shorter S-recoils see Astropart. Phy., 31 (2009) 261.

DRIFT Progress

- In 2007 we published results from DRIFT-IIa showing 500 accepted RPR events per day.
- In 2012 this had been reduced to 130 events per day.
- In 2014 with the thin film cathode this had been reduced to 3 events per day.
- And in 2016 with O₂ this had been reduced to 0 events in 54.7 days.
- In limit setting terms this is an improvement of x12,000 in 9 years, x2.8 per year beating Moore's Law as dark matter physicists do.
- DRIFT is background free.
- New directional results are coming.