

NUCLEAR EMULSIONS FOR WIMP SEARCH NEWS

Giovanni De Lellis Università "Federico II" and INFN Napoli

A novel approach to WIMP search

A dark matter telescope based on nuclear emulsions

Directional signature in the Wimp Search

- Solar system movement in the galaxy → WIMP flux not isotropic @ Earth.
- Directional measurement as a **strong signature** and unambiguous proof of the galactic DM origin
- Nuclear emulsions is a solid detector → high sensitivity with a compact detector
- Challenge: very short recoil track lengths, O(100 nm²)

Nuclear emulsions as sensitive media for charged particles

After the passage of charged particles through the emulsion, a latent image is produced

The emulsion chemical development makes Ag grains visible with an optical microscope

Recorded silver grains along the particle trajectory

AgBr crystal, size 0.2-0.3 μm is the "standard" detection element

Nuclear emulsions

Both light and heavy nuclei

Detect tracks when their lengths become comparable/shorter than the optical resolution

- Optical microscopes
 - Pros: Fast scanning profiting of the improvements driven by the OPERA experiment, dedicated measurement stations in each lab
 - Cons: Resolution with "standard" technologies $\sim 200 \text{ nm}$
- X-ray microscopes
 - Pros: High resolution ~ 50 nm or better
 - Cons: extremely slow and not convenient (need an external lab)

OPTICAL MICROSCOPE READ-OUT: STEP 1

Test using 400 keV Kr ions

Scanning with **optical microscope** and **shape recognition analysis**

Selection of Kr ion tracks with shape analysis

SELECTION OF C ION TRACKS WITH SHAPE ANALYSIS

INTRINSIC ANGULAR RESOLUTION AS A BY-PRODUCT OF THE NEUTRON STUDIES

NEUTRON TEST BEAM @ FNS (JAPAN)

Japan Atomic Energy Research Institute

INTRINSIC ANGULAR RESOLUTION

- Neutron test Beam sample (FNS exposure)
- Compare clusters with elliptical (e > 1.1) shape with the proton recoil direction
- Scattering contribution negligible

2.8 MeV Neutron Energy Measurement

- Measurement of track length and angle
- Proton energy using the energy-range relation (SRIM)
- \rightarrow Neutron energy

EFFICIENCY EVALUATION

- Implantation: 60÷100 keV C-ions
- Emulsion sample: 40nm-crystal
- Scan with X-ray microscope & select candidates
- Scan with Optical microscope by a pin-point check & Elliptical fit

X-ray MS

- 10.83nm / pix
- 2048 x 2048 pix CCD

X-ray microscope: ~50 nm resolution and readout speed ~ $(200\mu m)^2/100 s$

EFFICIENCY EVALUATION

BEYOND OPTICAL RESOLUTION

X-ray microscope

- Slow analysis speed
- Need of external X-ray guns

Optical microscope

- New technologies

Imaging beyond the optical resolution: 2014 Nobel Prize in Chemistry

Fluorescent molecule

Eric Betzig et al., Science 313, 1642 (2006)

RESONANT LIGHT SCATTERING FROM AG NANOPARTICLES

The polarization dependence of the resonance frequencies strongly reflects the shape anisotropy

SILVER GRAINS BUILDING UP TRACKS

Shape different from each other

Optical response strongly depends on the polarization of incident light

SILVER GRAINS BUILDING UP TRACKS

Shape different from each other

Optical response strongly depends on the polarization of incident light

SILVER GRAINS BUILDING UP TRACKS

Shape different from each other

Optical response strongly depends on the polarization of incident light

Microscope upgraded

polarizer below the camera, rotated to charge polarization

Rotate by 180° with 10° steps change the direction of polarization and measure the track

Measurements with plasmon resonance effect Images with different polarization

A TRACK MADE OF TWO GRAINS

3

2

-1

-2

-3

()

pixel 58nm

dx

dy

Track validated by elliptical shape analysis

A TWO-GRAINS TRACK

e = 1.27without polarizer Discarded by ellipticity cut (1.4)

SINGLE GRAIN FOR ACCURACY EVALUATION

POSITION ACCURACY

(pixel size 28 nm)

Unprecedented accuracy of 10 nm achieved on both coordinates Breakthrough

BACKGROUND STUDY

MEASUREMENT OF INTRINSIC RADIOACTIVITY: NEUTRONS

-	Nuclide	clide Contamination [ppb] Activity [mBq/Kg]				Constituent	Mass Fraction	=		
-	Gelatine						AgBr-I	0.78	_	
-	232 Th 2.7		11.0				Gelatin	0.17		
-	^{238}U	⁸ U 3.9		48.1				PVA	0.05	
-	PVA						(a) Constituents of nuclear emulsion			
	232 Th	2 Th < 0.5		< 2.0				(a) Constituents of nuclear emulsion		
-	238U < 0.7		< 8.6			238	1.187 nnh (23.1 mBa/kg)			
-	AgBr-I						2^{22} T 1.07 pp0 (25.1 mDq/Kg)			
	$\frac{232}{1.0}$ 1.0		0	4.1			232	232 Th: 1.26 ppb (5.1 mBq/Kg)		
-	²³⁸ U	²³⁸ U 1.5 18.5		:						
							¬ 1.6 ^{×10⁻⁹}			
Process SOURCES simulation Semi- [kg ⁻¹ y ⁻¹] [kg ⁻¹				Semi-an [kg ⁻¹ y ⁻	alytical calculation ¹]	Total Flux 1.4 U - Spontaneous fission 				
(α, n) from ²³² Th chain 0.12 ± 0.04 0.11 ± 0.03						0.03	÷ 1.2 ₽ E		Th - (alpha,n) reactions	
(α, n) from ²³⁸ U chain 0.27 ± 0.09 0.26 ± 0.				0.08						
Spontaneous fission			0.8 ± 0.3 0.8 ±		0.8 ± 0.1	3				
Total flux			1.2 ± 0.4		1.2 ± 0.4		드 0.8 #	\backslash		
$arepsilon\simeq 5\% ightarrow 0.06 \div 0.11 n/(kg\cdot year)$ Astroparticle Physics 80 (2016) 16–21						$g \cdot year)$ cs 80 (2016) 16-21				
			Contents lists available at ScienceDirect					2 4	6 8	10 Energy [MeV]
S-S		Astroparticle Physics								
ELS	EVIER journal homepage: www.elsevier.com/locate/astrop					artphys	and the second se			

Intrinsic neutron background of nuclear emulsions for directional Dark Matter searches

FACILITY AND DETECTORS AT LNGS

EXPERIMENTAL SET-UP WITH EQUATORIAL TELESCOPE OPTION 1: polyethylene shielding

EXPERIMENTAL SET-UP WITH EQUATORIAL TELESCOPE

OPTION 2: water shielding

Set-up for a test

Control the background with a small scale detector

DarkSide-10 shield

Water Tanks

- Empty space in the center (2 big tanks equivalent) for detector installation
- Tanks to be filled with demineralized water

SENSITIVITY

2D RECOIL ANGLE

2D RECOIL ANGLE (Threshold: 100 nm)

The directionality depends on the WIMP mass The lighter the WIMP, the stronger the angular anisotropy

LIKELIHOOD METHOD

- Observable: 2D recoil angle
- Signal: Gaussian (sigma dependent on M)
- Background: isotropic

implementation with ROOSTATS libraries (Cern)

Upper limit on number of signal events

Exposure = 100 kg yearThreshold = 100 nm

SIGNIFICANCE

• Effect of signal purity in the data

• $N_{tot} = 10, 50, 100$

3σ DISCOVERY REGION

SENSITIVITY: THRESHOLD EFFECT

LNGS-LOI 48/15 UNDER REVIEW BY THE LNGS SCIENTIFIC COMMITTEE

NEWS: Nuclear Emulsions for WIMP Search Letter of Intent (NEWS Collaboration)

A. Aleksandrov^{b,h}, A. Anokhinaⁿ, T. Asada^k, I.Bodnarchuk^m, A. Buonaura^{b,h}, M. Chernyavskii^o, A. Chukanov^m, L. Consiglio^e, N. D'Ambrosio^e, G. De Lellis^{b,h}, M. De Serio^{a,g}, A. Di Crescenzo^{b,h}, N. Di Marco^e, S. Dmitrievski^m, T. Dzhatdoevⁿ, R.A. Fini^{a,g}, S. Furuya^k, G. Galati^{b,h}, V. Gentile^{b,h}, S. Gorbunov^o, Y. Gornushkin^m, M. Guler^p, H. Ichiki^k, T. Katsuragawa^k, M. Kimura^k, N. Konovalova^o, K. Kuge^l, A. Lauria^{b,h}, P. Loverre^{d,j}, S. Machii^k, A. Managadzeⁿ, P. Monacelli^{d,j}, M. C. Montesi^{b,h}, T. Naka^k, M. Nakamura^k, T. Nakano^k, A. Pastore^{a,g}, D. Podgrudkovⁿ, N. Polukhina^o, F. Pupilli^f, T. Roganovaⁿ, G. Rosa^{d,j}, O. Sato^k, T. Shchedrina^o, S. Simone^{a,g}, C. Sirignano^{c,i}, A. Sotnikov^m, N. Starkov^o, P. Strolin^{b,h}, Y. Tawara^k, V. Tioukov^{b,h}, A. Umemoto^k, M. Vladymyrov^o, M. Yoshimoto^k, S. Zemskova^m

^aINFN Sezione di Bari, Bari, Italy ^bINFN Sezione di Napoli, Napoli, Italy ^cINFN Sezione di Padova, Padova, Italy ^dINFN Sezione di Roma, Roma, Italy ^eINFN-Laboratori Nazionali del Gran Sasso, Assergi (L'Aquila), Italy ^fINFN-Laboratori Nazionali di Frascati, Frascati (Roma), Italy ⁹Dipartimento di Fisica dell'Università di Bari, Italy ^hDipartimento di Fisica dell'Universit`a Federico II di Napoli, Napoli, Italy ⁱDipartimento di Fisica e Astronomia dell'Università di Padova, Padova, Italy ¹Dipartimento di Fisica dell'Università di Roma, Rome, Italy ^kNagoya University and KM Institute, Nagoya, Japan ¹Chiba University, Chiba, Japan ^mJINR-Joint Institute for Nuclear Research, Dubna, Russia ⁿSINP MSU-Skobeltsyn Institute of Nuclear Physics of Moscow State University, Russia ^oLPI-Lebedev Physical Institute of the Russian Academy of Sciences, Moscow, Russia ^pMETU-Middle East Technical University, Ankara, Turkey

CONCLUSION AND PERSPECTIVES

- Nuclear emulsions with nanometric grains open the way for a directional dark matter search with high sensitivity
- Breakthrough in readout technologies for optical microscopes are two-fold
 - No need for X-ray confirmation (much faster and convenient)
 - Push the track length threshold down (higher sensitivity)
- Neutron background from intrinsic radioactivity negligible up to ~ 10 kg year
- Prepare a kg scale (pilot) experiment as a demonstrator of the technology and the first spin-independent search of this kind
- Letter of Intent submitted to LNGSC
- INFN funded the R&D phase till the TDR (expected in Summer 2017)
- Funds from JSPS (Japan)