

First + Studies of SF₆ in a TPC

NGUYEN PHAN, ERIC LEE, RANDY LAFLER, DINESH LOOMBA UNIVERSITY OF NEW MEXICO

(UPDATE ON CYGNUS2015 LA TALK)

Electron vs. Negative Ion Drift Gases

Electron Drift

- Example: CF₄
 - Larger diffusion -> smaller detector length
 - Spin target -> no sacrifice of volume -> higher target density at same pressure -> can operate at shorter drift lengths.
 - Benign
 - Good scintillator -> allows for optical readouts
 - Fiducialization?

Negative Ion Drift

- Example: CS₂
 - Low diffusion -> large detector length
 - Good high voltage operation at low pressures
 - Demonstrated fiducialization
 - Lack spin-dependent content -> sacrifice detector volume to enable negative ion operation with a spin target
 - Toxic

Motivation

SF₆ Properties and Applications

Properties

- Non-toxic, non-volatile, colorless, odorless
- Electronegative gas,
- e- affinity = 1.1 eV
- High vapor pressure:
- ~ 15,000 Torr at room temperature

Industrial Uses

• Insulation for high voltage power devices

- Semi-conductors fabrication
- Metal casting
- Numerous other applications

Research

 Quencher in resistive plate chambers (RPCs) (as trace gas, not the primary)

Questions

- Is it possible to avalanche in SF₆ primary gas detector?
- What gas gain is achievable and how does it depend on pressure?
- What is the diffusion behavior of SF₆ and how does it compare to CS₂?
- Is fiducialization of events in the drift dimension attainable in SF₆ mixtures, and if so, under what conditions?
- Potential applications besides dark matter?

Experimental Apparatus Designed by Eric Lee at UNM

SF₆ Measurements

- Pressure: 20 Torr 100 Torr
- Drift Field: 0 1 kV/cm over a drift length = 60 cm
- All measurements currently made with THGEMs
- Ionization generated at cathode with N₂ laser (3.5 ns pulse width), trigger from laser.
- Fe-55 X-ray and Cf-252 neutron exposures
- CS₂ measurements at 20 and 40 Torr for comparison (identical setup used for SF₆)

30 Torr SF6 (0.4 mm THGEM)

30 Torr SF6 (1.0 mm THGEM)

(a) $^{55}\mathrm{Fe}$ energy spectrum in 30 Torr SF_6 using 1 mm THGEM

First Fe-55 spectrum in SF6 bulk gas TPC??

Gain ~ few 1000's

Gair

Gas

SF₆

0.4 mm THGEM

D. Loomba, Cygnus 201

8

Gas Gain

- Energy resolution appears to worsen with lower E/p inside the amplification region. to > 50%
- What other amplification devices can get gain in SF₆ (thin GEMs, micromegas, MWPCs, micro-channel plates, etc)?
- Can we get any gain at higher pressure (~ 1 atm)? Could be important for other applications. For example, if SF6 then why not SeF6 (Se for double-beta searches)?

Waveforms shown at CYGNUS2015

D. Loomba, Cygnus 2016

Waveform Features (2015 data)

11

(d) 40 kV

(e) 50 kV

(f) 60 kV

(d) 40 kV

(f) 60 kV

⁽e) 50 kV

Waveforms show 2 peaks, identified as SF5and SF6-, but what is all the structure?

- It disappears at high E/P.
- The structure is not independent of the peaks: there is one amplitude between the SF5- and SF6- peaks, and a lower amplitude left of (faster than) SF5-
- Chemistry of drifting SF5- and SF6-? Something to do with attachment/detachment?
- We recently discovered it was contamination…the following data (2016) is at 20 Torr with the contamination mostly gone:

D. Loomba, Cygnus 2016

April 7, 2016 1

¹⁶

Its water vapor!

- It has practically no effect on the mobilities of the SF5or SF6-, gain, etc.
- With it mostly gone we are able to see the SF5- peak at much lower E/p.
- The level of contamination that caused the effect? We believe it was around 0.1% 0.5% but its difficult to quantify.
- Most of the CF4-based directional experiments take care to use high purity gas, and they flow/circulate/ filter, so perhaps that will be sufficient.
- One concern is to watch for outgassing, especially if there is plastic in the vessel!

Drift Speed (preliminary)

• Ions in noble gases: at low fields, at high fields

D. Loomba, Cygnus 2016

Mobilities (preliminary)

 $v_d = \mu \cdot E$

 μ : mobility, ν : drift speed, *E*: electric field

Gas	Pressure (Torr)	Low Field Mobility (cm ² V ¹ s ⁻¹)	High Field Mobility (cm ² V ¹ s ⁻¹)
SF ₆	20	22.79 +- 0.25	27.19 +- 0.50
CS2	20	19.80 +-0.15	20.91 +- 0.3

SF6 15% higher mobility than CS2 in low field but 30% higher in high field. SF6 mobility is 19% higher in high field than low field.

Mobilities Update (preliminary)

Mobilities

- Both the SF5- and SF6- mobility data agree with the literature, as does the CS2 data.
- There is a rise in mobilities for all 3 -ion species at high E/P.
- It is a steeper rise for SF5/SF6 than CS2.
- This is probably indicative of non-thermal behavior.

Fiducialzation?

- With two peaks, SF5- and SF6-, the obvious question is whether we can fiducialize along the drift axis (z).
- This is an absolutely critical tool for eliminating the radon progeny backgrounds that appear at the cathode/anode surfaces.
- DRIFT has used this z-fiducialization capability to go from many/day to ZERO backgrounds in over 50 days (see DRIFT talk by D. Snowden-Ifft)

Fiducialization: Laser Generated Cathode Events

- Distribution of time difference for laser generated cathode events (60 cm drift).
- Calibration for absolute z for events with different

Generate events at various Z positions with a Cf-252 source.

²⁵²Cf events

Fiducialization: ²⁵²Cf Data (preliminary)

Thermal Diffusion?

- mm expected for thermal diffusion (60 cm drift, E = 1 kV/ cm)
- We clearly observe thermal behavior, as expected from -ion gas
- We see comparable widths in SF6 and CS2 in 40 Torr at E = 1 kV/cm
- Deviations from thermal begin at >700 kV/cm @ 40 Torr BUT diffusion still decreases with E, just not as expected for thermal
- Width increases at lower pressures due to longer capture length, detachment?
- Stay tuned ···

Conclusions

- Gain is achieved in SF₆ bulk gas TPC and ⁵⁵Fe signals detected.
- Poor energy resolution at high pressures/ low E/p. Inefficient stripping of electrons from anions? Reattachment in THGEM holes? Other amplification devices (e.g. micromegas, thin GEMs, MWPCs)?
- Detection of secondary peak at high reduced fields most likely SF⁻⁵. Fiducialization works using this feature.
- Diffusion appears thermal, similar to CS₂, but requires further study.

Many new mysteries but also new opportunities for further studies.

Next steps

- Finish the diffusion studies
- Thin GEMs we are undertaking a study gas gain in SF6 using a double or triple thin GEM detector
- Using the same detector/vessel as described here, we have started directionality studies in 20 Torr SF6. For the nuclear recoils we will use ~2.2 MeV neutrons from a recently obtained DD generator