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Electron vs. Negative Ion Drift Gases 
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Electron	
  Drift	
   Negative	
  Ion	
  Drift	
  

•  Example: CF4 
•  Larger diffusion -> smaller 

detector length 
•  Spin target -> no sacrifice of 

volume -> higher target 
density at same pressure -> 
can operate at shorter drift 
lengths. 

•  Benign 
•  Good scintillator -> allows for 

optical readouts 
•  Fiducialization? 

•  Example: CS2 
•  Low diffusion -> large detector 

length 
•  Good high voltage operation 

at low pressures 
•  Demonstrated fiducialization 
•  Lack spin-dependent content -

> sacrifice detector volume to 
enable negative ion operation 
with a spin target 

•  Toxic 
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Electron	
  Gas	
  

Advantages	
  
Negative	
  Ion	
  Gas	
  
Advantages	
  

Motivation 

SF6	
  ?	
  



SF6 Properties and Applications 

• Non-toxic, non-volatile, 
colorless, odorless 

•  Electronegative gas,   
•  e- affinity =  1.1 eV 
• High vapor pressure: 
• ~ 15,000 Torr at room 

temperature 

Properties	
  

•  Insulation for high 
voltage power devices 

•  Semi-conductors 
fabrication 

• Metal casting 
• Numerous other 

applications 

Industrial	
  Uses	
  

• Quencher in 
resistive plate 
chambers (RPCs) 
(as trace gas, not 
the primary) 

Research	
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Questions 

•  Is it possible to avalanche in SF6 primary gas detector? 

•  What gas gain is achievable and how does it depend 
on pressure? 

•  What is the diffusion behavior of SF6 and how does it 
compare to CS2 ? 

•  Is fiducialization of events in the drift dimension 
attainable in SF6 mixtures, and if so, under what 
conditions? 

•  Potential applications besides dark matter? 
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Experimental Apparatus Designed	
  by	
  Eric	
  Lee	
  at	
  UNM	
  



SF6 Measurements 

•  Pressure: 20 Torr – 100 Torr 

•  Drift Field: 0 – 1 kV/cm over a drift length = 60 cm 

•  All measurements currently made with THGEMs 

•  Ionization generated at cathode with N2 laser (3.5 ns 
pulse width), trigger from laser. 

•  Fe-55 X-ray and Cf-252 neutron exposures 

•  CS2 measurements at 20 and 40 Torr for comparison  
(identical setup used for SF6) 
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30	
  Torr	
  SF6	
  (1.0	
  
mm	
  THGEM)	
  

30	
  Torr	
  SF6	
  (0.4	
  
mm	
  THGEM)	
  

40	
  Torr	
  SF6	
  (0.4	
  
mm	
  THGEM)	
  

First	
  Fe-­‐55	
  
spectrum	
  in	
  SF6	
  
bulk	
  gas	
  TPC??	
  

Gain	
  ~	
  few	
  1000’s	
  



Gas Gain 

•  Energy resolution appears to worsen with lower E/p 
inside the amplification region.   to > 50% 

•  What other amplification devices can get gain in SF6 
(thin GEMs, micromegas, MWPCs, micro-channel 
plates, etc)? 

•  Can we get any gain at higher pressure ( ~ 1 atm)?  
Could be important for other applications. For 
example, if SF6 then why not SeF6 (Se for double-beta 
searches)? 

D. Loomba, Cygnus 2016 9 April 7, 2016 



Waveforms shown at CYGNUS2015 
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Waveform Features (2015 data) 

D. Loomba, Cygnus 2016 11 April 7, 2016 



D. Loomba, Cygnus 2016 12 April 7, 2016 

20 Torr SF6 waveforms 
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20 Torr SF6  zoomed in views of previous waveforms   



Waveforms show 2 peaks, identified as SF5- 
and SF6-, but what is all the structure? 

•  It disappears at high E/P. 

•  The structure is not independent of the peaks: there is 
one amplitude between the SF5- and SF6- peaks, and a 
lower amplitude left of (faster than) SF5- 

•  Chemistry of drifting SF5- and SF6-? Something to do 
with attachment/detachment? 

•  We recently discovered it was contamination…the 
following data (2016) is at 20 Torr with the 
contamination mostly gone: 
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10	
  kV	
  

50	
  kV	
  

30	
  kV	
  20	
  kV	
  

40	
  kV	
   60	
  kV	
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20	
  torr	
  
60	
  kV	
  

40	
  torr	
  
60	
  kV	
  

40	
  torr	
  
30	
  kV	
  	
  



Its water vapor! 
•  It has practically no effect on the mobilities of the SF5- 

or SF6-, gain, etc.   

•  With it mostly gone we are able to see the SF5- peak at 
much lower E/p. 

•  The level of contamination that caused the effect?  We 
believe it was around 0.1% – 0.5% but its difficult to 
quantify. 

•  Most of the CF4-based directional experiments take 
care to use high purity gas, and they flow/circulate/
filter, so perhaps that will be sufficient. 

•  One concern is to watch for outgassing, especially if 
there is plastic in the vessel! 
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Drift Speed (preliminary) 

•  Ions in noble gases:  at low fields ,    at high fields 
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Mobilities (preliminary) 

𝜇: mobility, 𝑣: drift speed, 𝐸:  electric field 
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Gas	
   Pressure	
  (Torr)	
   Low	
  Field	
  Mobility	
  
(cm2V-­‐-­‐1	
  s-­‐1)	
  

High	
  Field	
  Mobility	
  
(cm2V-­‐-­‐1	
  s-­‐1)	
  
	
  

SF6	
   20	
   22.79	
  	
  +-­‐	
  0.25	
   27.19	
  	
  +-­‐	
  0.50	
  

CS2	
   20	
  	
   19.80	
  	
  +-­‐	
  0.15	
   20.91	
  +-­‐	
  0.3	
  

SF6	
  15%	
  higher	
  mobility	
  than	
  CS2	
  in	
  low	
  field	
  but	
  30%	
  higher	
  in	
  high	
  field.	
  
SF6	
  mobility	
  	
  is	
  19%	
  	
  higher	
  in	
  high	
  field	
  than	
  low	
  field.	
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Mobilities Update (preliminary) 
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Mobilities 

•  Both the SF5- and SF6- mobility data agree with the 
literature, as does the CS2 data. 

•  There is a rise in mobilities for all 3 -ion species at high 
E/P. 

•  It is a steeper rise for SF5/SF6 than CS2.  

•  This is probably indicative of non-thermal behavior. 
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Fiducialzation? 

•  With two peaks, SF5- and SF6-, the obvious question is 
whether we can fiducialize along the drift axis (z).  

•  This is an absolutely critical tool for eliminating the 
radon progeny backgrounds that appear at the 
cathode/anode surfaces.  

•  DRIFT has used this z-fiducialization capability to go 
from many/day to ZERO backgrounds in over 50 days 
(see DRIFT talk by D. Snowden-Ifft) 
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SF-
5 

SF-
6 

20 Torr SF6 

2.7	
  %	
  
∆T 

9	
  %	
  faster	
  
than	
  SF-­‐6

	
  

Fiducialization? 



Fiducialization: Laser Generated Cathode Events 

•  Distribution of time difference 
for laser generated cathode 
events (60 cm drift). 

•  Calibration for absolute z for 
events with different  
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•  30	
  Torr	
  SF6	
  
•  E	
  =	
  1029	
  V/cm	
  
•  60	
  cm	
  drift	
  
•  Mean	
  =	
  282	
  us	
  
•  FWHM	
  =	
  4	
  mm	
  

Generate	
  events	
  at	
  
various	
  Z	
  positions	
  with	
  
a	
  Cf-­‐252	
  source.	
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Fiducialization: 252Cf Data (preliminary) 
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•  Events from 252Cf data run > 60 keVee 

•  Peaks found through automated process 
252Cf	
  source	
  
location	
  

∆𝑇	
  Distribution	
   𝑍	
  Distribution	
  



Thermal Diffusion? 
•  mm expected for thermal diffusion (60 cm drift,     E = 1 kV/

cm) 

•  We clearly observe thermal behavior, as expected from -ion 
gas 

•  We see comparable widths in SF6 and CS2 in 40 Torr at E = 
1 kV/cm 

•  Deviations from thermal begin at >700 kV/cm @ 40 Torr 
BUT diffusion still decreases with E, just not as expected for 
thermal 

•  Width increases at lower pressures – due to longer capture 
length, detachment? 

•  Stay tuned… 
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Conclusions 
•  Gain is achieved in SF6 bulk gas TPC  and 55Fe signals 

detected. 

•  Poor energy resolution at high pressures/ low E/p.  
Inefficient stripping of electrons from anions?  Re-
attachment in THGEM holes? Other amplification 
devices (e.g. micromegas, thin GEMs, MWPCs)? 

•  Detection of secondary peak at high reduced fields – 
most likely SF-

5 . Fiducialization works using this 
feature. 

•  Diffusion appears thermal, similar to CS2, but requires 
further study. 
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Many	
  new	
  mysteries	
  but	
  also	
  new	
  opportunities	
  for	
  
further	
  studies.	
  



Next steps 

•  Finish the diffusion studies 

•  Thin GEMs – we are undertaking a study gas gain in 
SF6 using a double or triple thin GEM detector  

•  Using the same detector/vessel as described here, we 
have started directionality studies in 20 Torr SF6. For 
the nuclear recoils we will use ~2.2 MeV neutrons from 
a recently obtained DD generator 
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