

VIRGO computing

approaches to GW computing models

L. Rei INFN - Genova

L. Rei **INFN** Istituto Naziona di Fisica Nuclea

general GW computing

≻3 detectors

- ≻Online analysis happens on the measurement site
- >Data is stored on site in a circular buffer (~6 month)
- >All data is transferred/stored to CCIN2P3, CNAF, Ligo sites
- >>Offline analysis requires constraints for each workflow
 - Virgo uses its two main CCs
 - LIGO uses dedicated Condor clusters and XSEDE supercomputer
- No unified job scheduler is used over the collaboration
 Analysis code once reviewed is freezed

Expect Data Acquisition Rate (DAR) ~ 27 MB/s Data storage ~ 592 TB Pledge cpus ~ 25000 HS06 10 HSE06 = 1 core

3° most demanding experiment @ CNAF Virgo Data facts

Low num of workflows + cpus limited tasks

Throughput to our CCs CNAF ~65 MB/s Lyon ~50 MB/s

L. Rei **INFN**

Ligo model

- > Shared fs per farm
- > same scheduler type
- > Different farms
- \succ Data replication
 - t=Bandwidth*szData << JobTime
- > Accounting/Priority per user
- ➤ Testing other models: pilots...

processorType	n.Cpu	
Opteron 275	662	
Opteron 2376	328	
Xeon E5-2670	96	
Xeon E3-1241v3	200	
Tesla K10	64	
Opteron 2376	504	
Xeon E3-1241v3	100	
Opteron 2376	504	
Xeon E3-1241v3	100	
Xeon X3220	1,176	
Xeon E3-1220v3	1,820	
Total	8747	

Data Transfer

- > Online data
 - Only inside EGO
 - Two fluxes, only one used
- ≻ RDS
 - ~ 1/10 of Bulk Data
 - Sent to CNAF, IN2P3, Ligo & received from Ligo
- > Bulk data
 - Sent to CNAF, CCIN2P3
- > Throughput problem (Equilibrium between recovery and transmission)

- Bw >= 2*DAR
- CCIN2P3

Analysis

> Online

- On site
- Low-latency (few seconds)
- Used to alert astrophysical partners

- 13 Xeon E5-2650
- > InTime
 - Few hours latency
 - On CCs
- > Offline
 - During run/End of run
 - On CCs (mainly CNAF)
 - Burst & Continuous Waves

CNAF model

- > Grid like environment
- > Used by Virgo workflows
- > Porting workflow not easy
 - on-going activity
- > Different solutions are possible
 - Emulating Ligo Farm (ahistorical)
 - Writing new tools (Better solution)

> Cost

- \circ CNAF pledge
- \circ CCIN2P3 pay for real use

Hostname	HSE06	Core	Slot
wn-200-01	172	16	16
wn-200-03	172	16	16
wn-200-04	172	16	16
wn-200-08	172	16	16
wn-201-01	172	16	16
wn-201-03	172	16	16
wn-201-04	172	16	16
wn-201-07	172	16	16
wn-201-08	172	16	16
wn-205-01	182	12	16
wn-205-03	182	12	16
wn-206-01	182	12	16
wn-206-03	206	24	24
wn-206-04	206	24	24
wn-206-07	206	24	24
wn-206-08	206	24	24
wn-200-11	354	16	24
wn-200-10	354	16	32
wn-200-13	354	16	32
N Host 20	3980	324	376

Pilots

- \succ Farm \rightarrow Grid
- > Well known objects
- > Already tested at CNAF
- > Basic job retrieve real task from a condor pool

- > Executables are exported via cvmfs
- DataFile downloaded everytime
- > If jobTime >> retrievalTime
- Required centralized resources & data storage
- > Partial workflow adapting

Future (and GPUs)

- > Philosophically is a distributed system
 - Cpu, gpu and dsp
- > Cpus need!
- ➤ Exploring gpus (CCIN2P3)

	2015	2016	2017	2018
Disk(TB)	<mark>445</mark>	592	<mark>656</mark>	720
CPU(HS06)	10000	25000	36000	78000