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Where	to	start?	
Paradigm

a>c	
neuron	
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Cor>cal	Areas	and	Columns	

3	

CorKcal	Area:	A	segment	of	
the	cerebral	cortex	that	carries	
out	a	given	func>on	

CorKcal	Column:	a	group	of	neurons	
in	the	cortex	that	can	be	
successively	penetrated	by	a	probe	
inserted	perpendicularly	to	the	
cor>cal	surface.	

Columns	are	subdivided	in	5/6	
specialized	layers.	
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Intra	and	Inter-areal	connec>ons	

4	

q  V.	Braitenberg.“grey	substance	and	white	substance”		Brain	2007	

	White	MaLer	

Long	Range	Inter-areal	Communica>on	

Grey	MaLer	

Neurons	+	Intra-areal	connec>ons	
Short	range	communica>on	

q  K.	Brodmann		"Vergleichende	Lokalisa9onslehre	der	
Grosshirnrinde"		1909	Leipzig:	Johann	Ambrosius	Barth	

CorKcal	Areas	
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A	Challenging	Problem	

•  The	simulaKon	of	the	corKcal	areas	ac>vity	can	be	accelerated	
using	parallel/distributed	many-processor	compu>ng	systems.		
However,	there	are	several	challenges,	including:	
–  Neural	networks	heavily	interconnected	at	mul>ple	distances,	local	

ac>vity	rapidly	produces	effects	at	all	distances	à		
Prototype	of	non-trivial	paralleliza>on	problem	

–  Each	neural	spike	originates	a	cascade	of		synap>c	events	at	mul>ple	
>mes:	t	+	Δts	à	Complex	data	structures	and	synchroniza>on.	Mixed	
>me-driven	(delivery	of	spiking	message)	and	event-driven	(neural	
dynamic	and	synap>c	ac>vity)		

–  Mul>ple	>me-scales	(neural,	synap>c,	long	and	short	term	plas>city	
models)	à	Non-trivial	synchroniza>on	at	all	scales	

–  Gigan>c	synap>c	data-base.	A	key	issue	for	large	scale	simula>ons	à	
Clever	parallel	resource	management	required.	
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DPSNN	
Distributed	Polychronous	Spiking	Neural	Net		

•  Applica>on	code	for	simula>on	of	in-vivo/in-vitro	neural	networks		
•  …and	and	evalua>on	of	off-the-shelf	and	custom	compu>ng	

systems.	
•  Point-like	Neuron	Models,	focus	is	in	synap>c	in	connec>vity.	
•  C++	plus	MPI.	
•  Developed	@INFN	APE	Lab	

–  Elena	Pastorelli	et	al.	"Impact	of	exponenKal	long	range	and	Gaussian	short	range	
lateral	connecKvity	on	the	distributed	simulaKon	of	neural	networks	including	up	to	
30	billion	synapses."	arXiv:1512.05264		

–  Elena	Pastorelli	et	al."Scaling	to	1024	soWware	processes	and	hardware	cores	of	the	
distributed	simulaKon	of	a	spiking	neural	network	including	up	to	20G	synapses."	
arXiv:1511.09325		

–  Pier	Stanislao	Paolucci	et	al.		"Power,	Energy	and	Speed	of	Embedded	and	Server	MulK-
Cores	applied	to	Distributed	SimulaKon	of	Spiking	Neural	Networks:	ARM	in	NVIDIA	
Tegra	vs	Intel	Xeon	quad-cores."	arXiv:1505.03015		
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Neuron	Models	
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Neural	Spiking	Model:	the	Izhikevich	neuron	

v(t)	is	the	neural	membrane	
poten>al;	this	is	the	key	
observable!	–	when	v		reaches	
vpeak,	a	neural	spike	is	produced	→	

I(t)	is	the	poten>al	change	generated	by	the	
sum	of	the	currents	from	all	synapses	incoming	
to	the	neuron.	It	is	a	‘forcing	func>on’:	
incoming	currents	are	present	if	spikes	arrived	

form	pre-synapKc	neurons.	

u(t)	is	an	auxiliary	variable	(the	
recovery	current	bringing	back	v	to	
equilibrium);	

The	dynamical	variables	of	the	
single	neuron	are	v(t)	and	u(t):	

→	when	a	neuron	spikes,	all	its	M	outgoing	
synapses	add	a	current	Wi	to	neurons	they	are	
connected	to,	with	a	set	of	different	delays	ti	
(polychronicity).	

t=	t0	

A	

B

D

C I(t0	+	t1)=...	+W1+...	

I(t0	+	tM)=...	+WM+...	

I(t0	+	t2)=...	+W2+...		
1

2

M

W1	

W2	
WM	
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Izhikevich	Neuron	Model	

Summary	of	the	neuro-
computa>onal	proper>es	of	
biological	spiking	neurons.	
The	same	model,	(Izhikevich	
(2003)	with	different	values	
of	parameters,	reproduces	in	
these	pictures	fundamental	
computa>ons	performed	by	
several	types	of	cor>cal	
neurons.		
Each	horizontal	bar	
corresponds	to	20	ms.		

9	

Eugene M. Izhikevich – IEEE Trans. Neural Networks 
15-5 (2004) pag. 1063-1070 
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Spike-Timing	Dependent	Plas>city	
Long Term Potentiation and Depression 
 
- LTP: the synapse weight is maximally 
potentiated if the pre-synaptic spike 
arrives to the target just before the post-
synaptic spike 
 
- LTD: the synapse weight is maximally 
depressed if the pre-synaptic spike 
arrives to the target just after the post-
synaptic spike 

S. Song et al., Nature Neuroscience 3 (2000) 

STDP depends	on	the	rela>ve	>ming	of	pre-	and	postsynap>c	ac>on	poten>als.	It	is	an	
evolu>on	of	the	Hebbian	learning	rule	that	captures	also	causality	and	an>-causality	
rela>ons.	It	adds	the	compe>>veness	to	the	classical	associa>ve	Hebbian	learning	rule. 
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LIFCA	Neuron	Model	

	

	

Leaky	Integrate	
and	Fire	neuron	
with	spike	
frequency	
Current	
Adap>on	
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b)	Grid	of	4	MPI	processes:		
16	columns	per	process		

Distribu>on	of	Cor>cal	Modules	among	MPI	
Processes	and	Synap>c	Connec>vity	

12	

A	sample	grid	of	
64=8x8	neural	
columns.	
	
Excitatory	neurons	
projects	76%	of	their	
synapses	toward	
neurons	located	in	the	
same	column,	3%	to	
first	neighbouring	
columns,	2%	to	second	
neighbours	and	1%	to	
third	neighbour.	
	

a)	Grid	of	64	processes:	1	column	
per	MPI	process		

c)	Grid	of	256	processes:	¼	of	column	
per	MPI	process		

One	core	can	host	
one	or	more	MPI	
processes.	
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Example	of	Simula>on	of		
Spiking	Ac>vity	and	Synap>c	Plas>city	

■  The	picture	represents	the	
evolu>on	of	a	single	Cor>cal	
Module	computed	by	the	DPSNN-
STDP	code	

■  In	this	example,	Cor>cal	Module:	
q  200	inhibitory	neurons	
q  800	excitatory	neurons	
q  Time	resolu>on:	1ms	
(horizontal	axis)	

q  Each	dot	in	the	rastergram		
represents	an	individual	spike		

q  The	evolu>on	of	the	
membrane	poten>al	of	each	
neuron	is	simulated	
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Emergent	Biological	Behaviour:	Spontaneous	
Evolu>on	of	Rythmic	Ac>vity	

	

As	synap>c	weights	evolve	according	to	STDP	(synap>c	spike->ming	dependent	
plas>city,	ini>al	delta	frequency	oscilla>ons	(2-4	Hz	@	first	second	ac>vity)	dissolves	
for	a	while	into	uncorrelated	Poissonian	ac>vity	(ac>vity	@	100	seconds)	and	then	
gamma	frequency	ac>vity	emerges	(30-100	HZ	@	3600	seconds)		
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DPSNN	
Strong	and	Weak	Scaling	

Weak	scaling	for	various	local	network	
sizes.	Exec	>me	normalized	to	synapse	
count.	

15	

Strong	scaling.	From	1	to	1024	cores	(INTEL	Xeon	Haswell	E5-2630	v3	8-cores	@	2.4	GHz)	
simulate	various	total	network	sizes	(from	0.9	to	14.2	Giga	synapses).	
	Exec	>me	normalized	to	synap>c	events.	

19/05/16	 Piero	Vicini	-	INFN	Roma	APE	Lab	



DPSNN	on	low-power	compu>ng	architectures	

•  Evaluate	the	performaces	of	low-power	processors	in	scalable	
simula>ons	of	spiking	neural	network	models.	

•  Compare	performances	against	tradi>onal	server-plauorm	
processors.	

•  Try	to	iden>fy	the	cri>cal	architectural	features	enabling	
bever	>me-to-solu>on	and	energy-to-solu>on	figures	on	this	
applica>on.	

•  Intel	Xeon	vs.	ARM	Cortex	cores	(two	genera>ons	to	evaluate	
trend)	
1.  Westmere	Xeon	E5620	@2.4	GHz	vs.	ARMv7-A	Cortex	A-15	@2.3	

GHz		
2.  Haswell	E5-2620	v3	@2.4	GHz	vs.	ARMv8-A	Cortex	A-57	@1.9	

GHz	
		

19/05/16	 16	Piero	Vicini	-	INFN	Roma	APE	Lab	



1st	Gen	low-power	plauorm:	nVIDIA	Jetson	TK1	

Dimensions:	5"	x	5"	(127mm	x	
127mm)		
Tegra	K1	SOC	(CPU+GPU+ISP	in	a	
single	chip)	
GPU:	NVIDIA	Kepler	"GK20a"	GPU	
with	192	SM3.2	CUDA	cores	(up	to	
326	GFLOPS	in	single	precision)	
CPU:	NVIDIA	"4-Plus-1"	2.32GHz	
ARM	quad-core	Cortex-A15	CPU	
with	Cortex-A15	bavery-saving	
shadow-core	
DRAM:	2GB	DDR3L	933MHz	EMC	
x16	using	64-bit	data	width	
Storage:	16GB	fast	eMMC	4.51	
Ethernet:	RTL8111GS	Realtek	
10/100/1000Base-T	Gigabit	LAN	
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DPSNN	on	Tegra	K1	

•  Tegra	K1	integrates	an	ARM	
Cortex-A15	embedded	
quad-core	processor	
–  Troubleless	recompila>on	
of	simulator	sources	and	of	
libraries	(e.g.	Open	MPI	
1.10.2)	

–  Robust	soyware	stack	
(ubuntu-derived	Linux	
distribu>on,	LTE	R21.4,	
kernel	3.10.40	)		

•  …and	a	GK20a	GPU	(192	
cuda	cores)	
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1°	Gen	server	plauorm:		
Supermicro	SuperServer	6016GT-TF	

	

Dimensions:	1U	standard	rack	
mountable	
Motherboard:	X8DTG-DF	
CPU:Dual	Intel	Westmere	quad-core	
Xeon	E5620	
DRAM:	48	GB	DDR3	1333	MHz	
NIC:	Mellanox	ConnectX	VPI	IB	QDR		
OS:	CentOS	release	6.7,	kernel		
2.6.32-573.7.1.el6.x86_64	
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Comparison	of	1°	Gen	server	and	low-power	
architectures	

•  Same	#	of	cores,	~Same	clock	frequency.	
•  Intel	Xeon	E5620	supports	Hypertheading	(ARM	Cortex	A-15	does	

not).	
•  SIMD	Floa>ng	Point	Theore>cal	Peak	Performance	(	2x	in	DP)	

–  ARM	Cortex-A15	(NEON):	
•  2	DP	FLOPs/cycle:	scalar	FMA	or	scalar	mul>ply-add	
•  8	SP	FLOPs/cycle:	4-wide	NEONv2	FMA	or	4-wide	NEON	mul>ply-add	

–  Intel	Westmere	(SSE4.2):	
•  4	DP	FLOPs/cycle:	2-wide	SSE2	addi>on	+	2-wide	SSE2	mul>plica>on	
•  8	SP	FLOPs/cycle:	4-wide	SSE	addi>on	+	4-wide	SSE	mul>plica>on	

•  Memory	Bandwidth:		14.9	GB/s	(ARM	Cortex-A15)	vs	25.6	GB/s	
(Intel	Xeon	E5620)		
–  DPSNN	makes	an	intensive	use	of	memory	(e.g.	for	delivering	spikes	to	

post-synap>c	neuron	queues).	
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Benchmark	Configura>on	(1°	Gen)		

•  DPSNN:	
–  Simula>on	>me:	3	s	
–  10K	LIFCA	neurons	
–  18M	synapses	

•  Low-power	plauorm:	
–  2	quad-core	ARM	A15	Jetson	TK1	+	Gigabit	switch	
–  8	MPI	processes	

•  Server	plauorm:	
–  1	Supermicro	SuperServer	6016GT-TF	(2	Intel	E5620	
quad-core	processors)	

–  16	MPI	processes	(hyperthreading)	
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1°	Gen	Results	(1)	

Server	plauorm	3.3	Kmes	beLer	than	low-power	plauorm	
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1°	Gen	Results	(2)	

Server	plauorm	14.4	Kmes	worse	than	low-power	plauorm	
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1°	Gen	Results	(3)	

Server	plauorm	is	4.4x	worse	than	low-power	plauorm	
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1°	Gen	Results	(4)	

Again,	server	plauorm	4.4x	worse	than	low-power	plauorm	
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Westmere	vs.	Cortex	A15	
Comments	on	Results	

•  We	did	not	subtract	any	base-line	power	
consump>on.	

•  If	we	did	it,	server	and	low-power	plauorms	
power	consump>on	would	have	been	reduced	
approx.	by	a	factor	4	and	3	respec>vely.	

•  Nevertheless	the	base-line	power	consump>on	
woud	s>ll	be	there!	(unless	you	design	your	own	
plauorm).		
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(limited)	Scaling	study	of	DPSNN	on	Jetson	TK1	

•  Simula>on	>me:	3	s.	
•  1240	LIFCA	neurons	per	cor>cal	column.	
•  2x2	cor>cal	columns	(4960	neurons,	5.4M	synapses)	
on	a	single	Jetson	TK1	(4	MPI	processes).	

•  4x2	cor>cal	columns	(9920	neurons,	11.2M	synapses)	
on	two	Jetson	TK1	(4	MPI	processes	on	each	board).	

•  	4x4	cor>cal	columns	(19840	neurons,	23.6M	synapses)	
on	two	Jetson	TK1	(8	MPI	processes	on	each	board).	

•  Run	both	with	“automa>c”	and	“manual”	cpu	
frequency	scaling	governor	(interac>ve	and	
userspace).		
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Results:	Time	to	Solu>on	

No	significant	reduc>on	fixing	Cortex-A15	cores	frequency	to	max	(2320.5	MHz).	
Automa>c	cpu	frequency	scaling	works	well	on	the	plauorm.	
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Results:	Power	Consump>on	

Automa>c	cpu	frequency	scaling	can	reduce	power	consump>on	of	10-15%.	
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Results:	Energy	to	Solu>on	
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Results:	Energy	per	Synap>c	Event	
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What	about	GK20a	GPU?	

•  Offloading	DPSNN	computa>onal	tasks	to	GK20A	
–  Random	genera>on	(cuRAND):		~10%	speedup	compared	to	
Cortex-A15	only.	

–  Working	on	neuron	dynamic	on	GPU.	
•  Caveats:	

–  Need	to	set	GK20a	core	and	memory	clocks	to	max	allowed	
values	in	order	to	measure	a	speedup	(automa>c	frequency	
scaling	does	not	perform	so	well	on	GK20a).	

–  Double	precision	peak	perf	1/24	of	single	precision	
–  Limited	memory	bandwidth	make	diffucult	to	reach	nominal	
peak	perf	figures.	

–  No	cache	coherency	between	Cortex-A15	and	GK20a.	
–  Need	to	try	different	strategies	to	move	data	between	CPU	and	
GPU	(explicit	copies,	managed,	zero	copy).	
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2nd	Gen	low-power	plauorm:	nVIDIA	Jetson	TX1	
Tegra	X1	SOC	(20	nm)	
CPU:	ARMv8	ARM	Cortex-A57	quad-core	
(2MB	L2	cache)	+	ARM	Cortex-A53	quad-
core	(64-bit)	in	Big.LITTLE	configura>on,		
102	MHz	/	1.9	GHz	clock	scaling.	
GPU:	NVIDIA	Maxwell		”GM20B”	with	
256	CUDA	core:	512	GFLOPS	(FP32),	
1TFLOPS	(FP16).	
DRAM:	4GB	LPDDR4		(25.6GBs	BW)	
Storage:	16GB		eMMC		
Ethernet:	10/100/1000Base-T		
OS:	Ubuntu	14.04.1	LTS	(GNU/Linux	
3.10.67-g458d45c	aarch64)	
SW	stack:	gcc	4.8.4	(Ubuntu/Linaro	
4.8.4-2ubuntu1~14.04.3),	Open	MPI	
1.6.5		
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2nd	Gen	server	plauorm:		
Supermicro	SuperServer	7048GR-TR		

	

Dimensions:	4U	standard		
Motherboard:	X10DRG-Q	
CPU:Dual		hexa	core	Intel	E5-2620	v3	
@2.4	GHz	(15MB	L2	cache),	1.2	up	to	
3.2	GHz	frequency	scaling,	22	nm	,	
mem	BW	up	to	59	GB/s	
DRAM:	64GB	RAM	DDR4	2133	MHz		
NIC:	Mellanox	ConnectX	VPI	IB	QDR		
OS:	CentOS	7.2,	kernel	
4.5.3-1.el7.elrepo.x86_64	
SW	Stack:	gcc		4.8.5,	Open	MPI	1.10.0	
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Benchmark	Configura>on	(2°	Gen)		

•  DPSNN:	
–  Simula>on	>me:	3	s	
–  10K	LIFCA	neurons	
–  18M	synapses	

•  Low-power	plauorm:	
–  1	Jetson	TX1	(quad	core	ARM	

Cortex	A57)	
–  4	MPI	processes,	interac>ve	freq	

scaling	governor	
•  Server	plauorm:	

–  1	Supermicro	SuperServer	
7048GR-TR	(2	hexa	core	Intel	
E5-2620	v3	@	2.40GHz)	

–  4	MPI	processes,	powersave	freq.	
scaling	governor	
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2°	Gen	Results	(1)	

Server	plauorm	is	about	5	Kmes	faster	than	low-power	plauorm	
(~3.3x	for	previous	genera>on	devices…)	
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2°	Gen	Results	(2)	

Server	plauorm	14.5	Kmes	worse	than	low-power	plauorm	
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2°	Gen	Results	(3)	

Server	plauorm	is	2.9x	worse	than	low-power	plauorm	
(~4.4x	worse	for	previous	genera>on	devices…)	
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2°	Gen	Results	(4)	

Again,	server	plauorm	2.9x	worse	than	low-power	plauorm	
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Haswell	vs.	Cortex	A57	
Comments	on	Results	

•  Effec>ve	Cortex	A57	usable	max	freq.	is	1734	
MHz.		

•  Taking	into	account	the	full	baseline	power	
consump>on	is	unfair	for	the	Haswell	plauorm	
(used	4	cores	out	of	12).	If	we	renormalize	the	
baseline	to	1/3	for	the	Haswell,	results	would	
be:	
– Power	consump>on	ra>o:	10.9	(instead	of	14.5)	
– Energy	to	solu>on	ra>o:	2.2	(instead	of	2.9)	
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Conclusions	
•  ARM	Cortex	A-15/A-57:	

–  Interes>ng	Energy/Syn.	Evt.	figures	
–  Good	weak	scaling	from	1	to	2	nodes,			
–  Mature	soyware	stack	to	deploy	a	parallel	applica>on	like	
DPSNN.	

•  Two	genera>ons	comparison	(Westmere-Cortex	A15,	
Haswell-Cortex	A57)	shows	a	bever	trend	for	the	evolu>on	
of	the	Intel	Xeon	architecture	though.	

•  …both	are	s>ll	largely	outperformed	by	dedicated	
plauorms:	
–  SpiNNaker	(specialized	mul>-core	ARM):	20	nJ/syn.	evt.	
–  TrueNorth	(ASIC):	26	pJ/syn.	evt.	
–  Human	brain:	1–10	fJ/syn.	evt.	range.	
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Thanks	for	your	aven>on	
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