INSIDE Meeting

Report on the group activities on the

HW PET detector Back End Electronics

20 January 2016 G. Sportelli

The INSIDE PET Back End Electronics

- Initial architecture
 - Provide a full in-beam PET system able to sustain annihilation and prompt photon rates during the beam irradiation
 - 30 kHZ/cm² maximum sustainable single rate
 - 16 independent modules
- Main changes
 - The TX-RX interconnection has changed (now they use Ethernet connections)
 - The TX boards are now calibrated by a separate unit

ASICs calibration

- The TX boards need calibration data from the user through the Ethernet interface
- This is being done by a preliminary LabView script originally developed by Richard Wheadon and extended by Matteo Morrocchi
- The translation to SW/FW on the motherboard required further planning to be completed
- Agreed strategy: develop an alternate calibration software and use it to test if calibration through the motherboard is needed at all and, in any case, to plan for the final calibration subsystem
- Two alternate methods have been carried out

- Advantages
 - no custom FW development
 - full-SW based system
 - relatively cheap
 - part of the development is done already
- Disadvantages
 - the DAQ workstation might not be fast enough to process events at the expected count rates
 - SW development might not take less than the MBbased solution

Ethernet cable

Advantages

highest performance

- Disadvantages
 - relies on contractors deadlines (4 months delay for RX boards)
 - relies on prompt and successful FW/SW development

Slow control and plans for the ASIC Configuration

- Communication paths:
 - Host PC \rightarrow MB:
 - USB
 - MB \rightarrow RX-Boards:

• SPI

• RX \rightarrow TX-Boards:

• Ethernet

Words of the communication protocol		
Bit	15 to 8	7 to 0
W0	RX_ID	TX_ID
W1-4	DATA	
W5	T_ID	

Coincidence Sorter Architecture

- LVE: acts like a comparator
 - Compares timestamps
 - Outputs the earliest timestamp
 - Outputs 5 additional bits
- next_FEnum stage
 - Outputs the 4 bits
 - Restarts the process
 - Multiplexer
 - Recovers the data packet from the input FIFO
- Goal of 20MHz minimum throughput rate →
 Current specs:
 - 28MHz for the sorter with 2-inputs LVE
 - 40MHz for the sorter with 3-inputs LVE

Coincidence streaming architecture

RX HW development status in the last meeting (06/2015)

- Functional design
- Schematic design
- Mechanical design
- PCB design 🖌
- Construction and assembly X

• Expected delivery 9/2015

RX HW development status as of today

- Functional design
- Schematic design
- Mechanical design
- PCB design 🖌
- Construction and assembly
- Initial testing (Power-up, JTAG chain)

Most recent results are marked in blue

The first prototype of RX board

Next work

- SoCKit board -> RX Board
 - Test constraining of ethernet connections
 - Update ethernet firmware
 - Run through all the XJTAG tests
- Motherboard
 - Develop RX/MB interface
 - Test coincidence sorting
 - Test coincidence streaming through USB