Dinamiche multiscala delle onde lente cerebrali: teoria ed esperimento

Maurizio Mattia

Istituto Superiore di Sanità, ISS Roma – Italy

maurizio.mattia@iss.it

Sleep is a fundamental need

Sleep is a large part of our life

Hobson, Nat Rev Neurosci, 2009

Sleep science basics

Pace-Schott & Hobson, Nat Rev Neurosci, 2002

Slow-wave sleep as a default mode

Kirszenblat & van Swinderen, Trends Neurosci, 2015

January 2016, HBP WaveScalES Italy Day

Slow Up/Down oscillations (SO)

 Up (high firing)/Down (quiescent) oscillations (< 1Hz) can be observed in mammals during deep sleep stages and under anesthesia.

January 2016, HBP WaveScalES Italy Day

Slow Up/Down oscillations (SO)

@ M.V. Sanchez-Vives' lab, Barcelona, Spain

- In vivo extracellular recordings from visual cortex (V1) of anesthetized (ketamine/medetomidine) rats (adult male Wistar).
- Up and Down state onsets can be reliably singled out inspecting multi-unit activity (MUA, the spiking activity of the neuronal pool nearby the electrode tip).
- The distribution of residence times in Up and Down states are relatively narrow.

Columnar organization of SWA

Mattia, Perez-Zabalza, Tort-Colet & Sanchez-Vives, submitted

• Down-to-Up transitions initiate in deep layers, successively spreading towards the more superficial ones.

January 2016, HBP WaveScalES Italy Day

Macroscopic activation waves during SWA

January 2016, HBP WaveScalES Italy Day

Different spatiotemporal patterns

SWA \rightarrow Multiscale organization of the brain

A theoretical "microscopic" description which reduces the dimensionality of the problem is needed to bridge together quantitatively mesoscopic and macroscopic scales.

From single neuron to population dynamics

The theoretical hinge: a homogeneous network of generic Integrate-and-Fire (IF).

Towards a low-dimensional dynamics...

Spectral expansion of the Fokker-Planck equation yields to an effective v(t) dynamics.

... a low-D Wilson-Cowan equation

A v(t) dynamics in which only few modes with slowest eigenvalues are included.

January 2016, HBP WaveScalES Italy Day

Maurizio Mattia @ ISS, Rome, Italy

Additional negative feedback to have SO

$$\dot{v} = \frac{\Phi(c, v) - v}{\tau_v(c, v)}$$

$$\dot{c} = -\frac{c}{\tau_c} + v$$

- An activity-dependent fatigue variable *c* provides an inhibitory feedback.
- The effective energy landscape is shaped by *c*, making Up and Down states progressively unstable.
- The network behaves like a relaxation oscillator. This is the typical theoretical modeling of SO.

Gigante et al., *Phys Rev Lett* 2007 Mattia & Sanchez-Vives, *Cogn Neurodyn* 2012

Reproducing SO in silico

Bazhenov et al., *J Neurosci* 2002; Compte et al., *J Neurophysiol* 2003; Hill & Tononi, *J Neurophysiol* 2005; Destexhe, *J Comput Neurosci* 2009; Mattia & Sanchez-Vives, *Cogn Neurodyn* 2012; D'Andola, Wienert, Mattia & Sanchez-Vives, *in preparation*

Probing bistability underlying in vivo SO

Mattia, Perez-Zabalza, Tort-Colet & Sanchez-Vives, submitted

• Hysteresis can be the sign left by a bistable dynamical system, where both Up and Down states are temporarily coexistent stable states.

January 2016, HBP WaveScalES Italy Day

Hysteresis in L5 cortical modules

In vivo (rat V1)

• Considering the MUA in deep layers as input activity to the more active module, a history dependent dynamics can be highlighted: responses to the same input can be different.

SWA on *in silico* large-scale neural fields

January 2016, HBP WaveScalES Italy Day

Cortical structure from in vitro SWA

Conclusions and outlooks

- SWA as a default mode which allow to constrain quantitative brain models implemented in in large scale simulations.
- SWA as a reference to investigate differences between normal and pathological brain, and between animal species.
- Sleep-wake brain state transitions: an open window on the computational primitives expressed by neuronal networks.

January 2016, HBP WaveScalES Italy Day

In collaboration with...

Maria V. Sanchez-Vives Nuria Tort-Colet Maria Perez-Zabalza Beatriz Rebollo

IDIBAPS, Barcelona (Spain)

Alberto Muñoz-Cespédes

Complutense Univ. of Madrid (Spain)

EU FP7 FET www.corticonic.org

January 2016, HBP WaveScalES Italy Day

Cristiano Capone

PhD @ Sapienza Univ. of Rome & ISS, Rome (Italy)

Paolo Del Giudice Guido Gigante

ISS, Rome (Italy)

Istituto Nazionale di Fisica Nucleare

Looking for post-docs...

- <u>Period</u>: Spring 2016 Spring 2018 (two years) in Rome
- <u>Background</u>: physics/mathematics/engineering, programming skills for *in vivo* data analysis (Matlab) and/or large-scale spiking neuron network simulations
- <u>Project</u>: WaveScalES workpackage of the renewed "cognitive and systems neuroscience" subproject of HBP
- <u>Aim</u>: Understanding multiscale dynamics of slow-wave activity from deep anesthesia to wakefulness

maurizio.mattia@iss.it

Human Brain Project