

Real-Time Quality Assurance in Particle Therapy: simulation and DAQ challenges

Francesco Pennazio Università di Torino and INFN, TORINO francesco.pennazio@unito.it

Outline

- •Monitoring in HT
- •The INSIDE experiment
- •INSIDE DAQ system
- •INSIDE data processing
- •DAQ upgrades
- •Monte Carlo Simulations for in-beam PET
 - treatment simulation
 - Detector simulation
- •Simulation speed-up

Hadrontherapy monitoring

Why HT monitoring?

Uncertainty in particle range:

•validate the conformity actual dose delivery wrt treatment planning

•Ensure treatment effectiveness

•Healthy tissues sparing HT monitoring (possibly realtime) effects:

More flexibility in HT treatment planning nearby critical organs
Higher dose/fraction (hypofractioned plans):

•More patients per day treated

•Significant improvement in patient comfort

Current approach: Opposed fields, overshooting

Desirable approach: Different beam angles and no overshooting

Hadrontherapy monitoring

Secondary particles in HT and detectors

Monitoring in HT: Operating principle

Monitoring in HT: in-beam PET

Monitoring in HT: prompt photons

INnovative Solutions for In-beam DosimEtry in Hadrontherapy

Designed to:

- □ be integrated in the gantry
- □ be operated in-beam
- provide an IMMEDIATE feedback on the particle range

In-beam PET heads

[1] Work partly funded by the European Union 7th Framework Program (FP7/ 2007-2013) under Grant Agreement No. 256984 EndoTOFPET-US and supported by a Marie Curie Early Initial Training Network Fellowship of the European Union 7th Framework Program (PITN-GA-2011-289355-PicoSEC-MCNet).

F. Pennazio

Inside Preliminary results

Image and profile reconstruction

The INSIDE in-beam PET DAQ chain

Data processing

Tasks to performed online:

- •Data quality monitoring (Gui)
- •Energy threshold and **coincidences finding** (high performance dedicated machine and code)
- •In-spill and inter-spill discrimination (if applicable)
- •MLEM 3D image reconstruction as soon as enough data is collected
- •On-line comparison with expected image

DAQ development and upgrades

Software:

Developed since project start
Common C++ framework for analysis of simulation and data

- -> flexible and OO
- •Crucial for system check and debug
- Feedback and new functionalities found and

implemented on firmware

Future possible improvements:
Next-gen (7) FPGA
System-on-chip Rx layer
Fine TDC calibration LUT applicable (consequences: TOF)
On-line accelerator information brought to DAQ -> finer data matching

Firmware:

Developed since project start
Basic functions implemented first
New functionalities added later
(i.e. data decoding, calibration and energy threshold)

->lower data rate to be processed online by the coincidence finder

In-beam PET simulations

In-beam PET simulations: future challenges

Goal: improve **simulation speed**

•Treatment is based on pencil-beams: easy parallelization

Simulation simplification: bias, more aggressive energy cuts, simplified transport
Use of new non-standard tools (planIT?)
GPU for image reconstruction

Goal: improve simulation accuracy

More accurate reproduction of beam structure (i.e. beam delivery time may not be exactly known a priori)
Accurate bias and simulation of significant processes other than beta+ decay

Ultimate Goal: fast detector response simulation
On-line accurate monitoring for cyclotrons and fast duty cycle synchrotrons
Easier deconvolution of data from background during

beam delivery

Conclusions

- •Real-time monitoring is a key to fully exploit hadrontherapy
- •Different techniques with strengths and pitfalls
- •All need reference data to be compared with
- •Good preliminary indications from INSIDE in-beam PET test with phantoms
 - •Data acquisition in-beam without modification of CNAO clinical workflow
 - •Accurate range measurament

•Data acquisition and process require (ongoing) effort on features design

•Simulation validation and accuracy is crucial for HT monitoring

•Simulation speed is a key to extent its purposes

Acknowledgements

Giuseppe Battistoni Vincenzo Patera Valeria Rosso

ASIC designers

Angelo Rivetti Manuel Dionisio Rolo

INFN – Torino Technical Staff

Giuseppe Alfarone Florea Dumitrache Marco Mignone Barbara Pini Mauro Scalise Antonio Zampieri

INFN-Torino

Simona Giordanengo Stefano Bagnasco

CNAO personnel

Marco Donetti Mario Ciocca Marco Pullia

INSIDE PET team

Maria Giuseppina Bisogni Niccolo' Camarlinghi Alberto Del Guerra Veronica Ferrero Elisa Fiorina Giuseppe Giraudo Matteo Morrocchi Francesco Pennazio Cristiana Peroni Maria Antonietta Piliero Giovanni Pirrone **Richard Wheadon**