

Latest CMS results @ 13 TeV

Simranjit S. Chhibra (INFN - Bologna)

on behalf of the CMS Collaboration

(Aperitivo scientifico - Bologna, 8 April 2016) https://agenda.infn.it/conferenceDisplay.py?confld=10726

sim ranjit.singh.chhibra@cern.ch

Outline

- The CMS experiment
- Introduction to "particle physics" data analysis
- CMS 13 TeV results for
 - diphoton resonance searches: excess @ 750-760 GeV
 - heavy gauge boson searches
 - dark matter searches
 - Higgs boson precision measurements
- Summary/2016 physics plans

The LHC @ CERN

The CMS Experiment

Particles' signature in CMS

The CMS Collaboration

• 3500 scientists, engineers and students from 193 institutes in 43 countries

Introduction to particle physics data analysis: real example

 Data analysis is essentially an attempt to make sense of data events on the true basis

Latest CMS results @ 13 TeV

CMS

Introduction to particle physics data analysis: real example

 Data analysis is essentially an attempt to make sense of data events on the true basis

Latest CMS results @ 13 TeV

CMS

Introduction to particle physics data analysis: real example

 Data analysis is essentially an attempt to make sense of data events on the true basis

CMS

Run1 Legacy Results

- Run1 data: ~5.5/fb @ 7TeV, ~20/fb @ 8TeV
- Discovery of the Higgs boson of SM
- Many SM parameters measurements
- Many BSM searches, a few bumps

Aperitivo scientifico - Bologna, 8 April 2016

CMS 13 TeV dataset

CMS Integrated Luminosity, pp, 2015, $\sqrt{s}=$ 13 TeV

Increased reach @ 13 TeV

Search for high-mass diphoton resonances

Aperitivo scientifico - Bologna, 8 April 2016

Latest CMS results @ 13 TeV

13

Introduction

CCMS (interpretation)

OB

THE STREET

- Motivated by several theories beyond the SM:
 - spin-0 SM extensions, spin-2 Randall-Sundrum (RS) model of extra-dimensions (graviton search)
 - 100s of phenomenological papers in arXiv
- Two high-pT photons:
 - reconstructed as high energy deposits in EM calorimeter
- Backgrounds: irreducible $\gamma\gamma$ and reducible γ j and jj
- Search for localised excess of events in the diphoton invariant mass spectrum, from 500 GeV to 4.5 TeV
- Three width scenarios: $\Gamma/m_{\gamma\gamma} = 1.4e-4$ (narrow), 1.4e-2 and 5.6e-2 (wider)

Diphoton event

Diphoton invariant mass spectrum

 Analysis is performed in two categories: barrel-barrel (EB-EB) and barrelendcap (EB-EE) to increase the sensitivity

Upper limits

p-values

- Largest excess is observed for m_x = 760 GeV and for width = 1.4e-2
- Local significance: 2.8 σ for spin-0 and 2.9 σ for spin-2
- Global significance < 1σ

p-values (13 TeV + 8 TeV)

- CCMS Party of With Addard
- Largest excess is observed for m_x = 750 GeV and for width = 1.4e-4)
- Local significance: 3.4 σ for spin-0 and spin-2
- Global significance = 1.6σ

Search for heavy gauge bosons

Aperitivo scientifico - Bologna, 8 April 2016

Latest CMS results @ 13 TeV

20

Z' -> $\mu^+\mu^-$ or e^+e^-

- Heavy gauge boson, Z', decaying to a pair of leptons
 - spin-0 sequential standard model (Z'_{SSM}) and super-string inspired Z'_w models
- Clean signature of two same flavour lepton candidates with very low background at highmass
- Search for localised excess in dilepton invariant mass spectrum, up to 5TeV
- Highest mass events:
 - Muon 2.4 TeV
 - Electron 2.9 TeV
- p-value to observe at least one event in the range m(ee) > 2.8 TeV is 3.6% (> 2σ)

Dimuon event

Upper limits

- Three width scenarios: 0%, 0.6%(Z'_{SSM}) and 3%(Z'_{ψ})
- Z'_{SSM} of mass below 3.15 TeV and Z'_{ψ} of mass below 2.6 TeV are excluded

W' -> $\mu\nu_{\mu}$ or $e\nu_{e}$

- Heavy gauge boson, W', decaying to a lepton + missing E_T
 - spin-0 sequential standard model (W'_{SSM})
- Highest mass events:
 - Muon 1.3 TeV
 - Electron 2 TeV

W'_{SSM} of mass below 4.4 TeV is excluded

Latest CMS results @ 13 TeV

CM

Dijet search

- Motivated by string resonances, spin-0 diquarks, axigluons and colorons, excited quarks, color-octet scalar and W's models
- Signature of two high- p_{τ} (leading) jet candidates with very low background at high-mass: $\Sigma_{iet}P_T(jet) > 800$ GeV (or a jet with $p_T >$ 500 GeV)
- Backgrounds: irreducible dijet, reducible lepton + jets
- · Search for localised excess in dijet invariant mass spectrum, from 1.5 to 7TeV
- Highest mass events: 6.14 TeV 2.4 fb⁻¹ (13 TeV) CMS 95% CL Exclusions of Dijet Resonances (TeV) 10^{2} *B* A [pb] CMS String Scalar diquark String Excited guark Axialuon/coloron 10 Color-octet scalar Scalar diquark 6.0 W ь Z RS graviton Axigluon/coloron 5.1 95% CL upper limits gluon-gluon quark-gluon 5.0 Excited quark quark-quark 10⁻¹ Color-octet scalar 3.1 2.6 10⁻² W' 3 5 10^{-3} 20 fb⁻¹ (8 TeV) 2.4 fb⁻¹ (13 TeV) 2 6 3 5 Resonance mass [TeV] Latest CMS results @ 13 TeV

Data

Fit

CMS

 10^{3}

10

10

10

10⁻²

 10^{-3}

(Data-Fit)

 σ_{stat}

2.4 fb⁻¹ (13 TeV)

Dijet search

• Hig

• Motivated by string resonances, spin-0 diquarks, axigluons and colorons, excited quarks, color-octet scalar and W's models

Dijet search (
$$m_{jj} < 1 \text{ TeV}$$
)

- Ba
 Data Scouting: a dedicated trigger which filters the events if Σ_{jet}E_T(jet) > 250 GeV
 - Only a part of event content, kinematics of trigger level reco. jets, is stored then
 - Fits to the CMS storage capabilities
 - Allows to perform the dijet resonance search at low masses
 - 13 TeV results are not public yet

Dijet event @ 13 TeV

Search for dark matter

Aperitivo scientifico - Bologna, 8 April 2016

Latest CMS results @ 13 TeV

28

Introduction

- Currently the most popular candidate is a weakly interacting massive particle (WIMP), i.e. a particle with weak interactions and masses roughly above the proton mass
- Dark matter detection at colliders: produce DM particles by colliding SM particles at high energy

$jet(s) + large missing E_T event$

$jet(s) + large missing E_T$

- Invisible DM particles escape detection: tag events using recoiling object(s) and missing E_T
- Results are interpreted in terms of simplified models: described by mediator and DM mass

Upper limits on $\mu = \sigma / \sigma_{TH}$

 10^{3}

CMS Preliminary

 $g_{DM} = g_{SM} = 1$

Vector

 10^{2}

() M^I M^I 1200

1000

800

600

400

200

Latest CMS results @ 13 TeV

Observed CL

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

2.1 fb⁻¹ (13 TeV)

ledian Expected 90% CL

TeV - Observed 90% CL

8TeV - Median Expected 90% CL

 10^{4}

 $m_{MED} (GeV)$

served 90% CL

Scale Uncert

Planck+WMAP Relic

Higgs boson precision measurements

Aperitivo scientifico - Bologna, 8 April 2016

Latest CMS results @ 13 TeV

32

Higgs $\rightarrow ZZ^* \rightarrow 41$

- Local significance for m_H = 125.09 GeV:
 - observed: 2.5σ (6.5 σ for Run1 @ 125GeV)
 - expected: 3.4σ (6.3 σ for Run1 @ 125GeV)

Higgs -> $\gamma\gamma$

- Local significance for m_H = 125.09 GeV:
 - observed: 1.7σ (5.6 σ for Run1 @ 125GeV)
 - expected: 2.7σ (5.3σ for Run1 @ 125GeV)

Higgs properties measurements

2.8 fb⁻¹ (13 TeV)

Summary/2016 physics plans

- A large number of interesting results have been produced by CMS @ 13 TeV, and a few of them have been presented today
- An excess has been observed in diphoton resonance searches, around 750-760 GeV
- Dijet resonance search is being performed using the data collected by "data-scouting" algorithm@ 13 TeV
- It is an exiting possibility at CMS to investigate this excess further, using new data that will be collected in 2016
- Other possible decay channels such as $Z\gamma$, ZZ etc. will also join this marathon
- No any excess has been observed in any of the other BSM high-mass resonance searches, and exclusion limits have been set
 - Searches will continue using 2016 data
- Exclusion limits has been set on the dark matter masses
 - Search will continue using 2016 data
- Higgs boson precision measurements have been performed and results are found in agreement with SM
 - Measurements will continue using 2016 data

Additional material

The CMS Collaboration

• 3500 scientists, engineers and students from 193 institutes in 43 countries

Upper limits for diphoton search @ 8TeV

Diphoton upper limits for different widths (B = 3.8T + 0T)

Diphoton upper limits (B = 3.8T)

• RS graviton of mass below 1.3, 3.1 and 3.8 TeV are excluded for $\Gamma/m_{\gamma\gamma}$ = 1.4e-4, 1.4e-2 and 5.6e-2 respectively

$Z\gamma$ invariant mass spectrum

Upper limits for $Z\gamma$

Statistical analysis

Upper limits

$$q_{\mu} = -2 \ln \frac{\mathcal{L}(\operatorname{obs} | \mu \cdot s + b, \hat{\theta}_{\mu})}{\mathcal{L}(\operatorname{obs} | \hat{\mu} \cdot s + b, \hat{\theta})} \qquad CL_{s} = \frac{P(q_{\mu} \ge q_{\mu}^{\operatorname{obs}} | \mu \cdot s + b)}{P(q_{\mu} \ge q_{\mu}^{\operatorname{obs}} | b)} \le \alpha$$

p-value
$$q_0 = -2 \ln \frac{\mathcal{L}(\operatorname{data} | b, \hat{\theta}_0)}{\mathcal{L}(\operatorname{data} | \hat{\mu} \cdot s + b, \hat{\theta})}, \text{ with } \hat{\mu} > 0$$
 $p_0 = P(q_0 \ge q_0^{obs} | b)$

$$\begin{array}{l} \text{signal parameters} \quad q(a) = -2\Delta \ln \mathcal{L} = -2 \ln \frac{\mathcal{L}(\text{data} \,|\, s(a) + b, \, \hat{\theta}_a)}{\mathcal{L}(\text{data} \,|\, s(\hat{a}) + b, \, \hat{\theta})} \end{array}$$

Aperitivo scientifico - Bologna, 8 April 2016