Physics case and status of the **KM3NeT** neutrino telescope

INFN - Sezione di Bologna

Tuesday, January 26, 2016

KM3Ne

I. (Astro)Physics Case: why neutrinos?

2. Comments about the recent findings with current telescopes

- 3. New generations of neutrino telescopes: KM3NeT
- 4 Trigger and Data Acquisition System for KM3NeT
- 5. Recent achievments with the recently deployed string

(Astro)Physics case - CR energy and abundances spectra

CR abundances **CR** energy 1016 × Sun (a) 1014 Meteorites Cosmic rays DIRECT INDIRECT 1012 MEASUREMENTS Relative abundance MEASUREMENTS 10¹⁰ 108 Knee 10⁶ 104 10⁴ 2nd Knee Grigorov 10² JACEE (supposed) $E^{2.6}F(E) \left[\text{GeV}^{1.6} \text{ m}^{-2} \text{ s}^{-1} \text{ sr}^{-1} \right]$ EXTRAGALACTIC MGU ∇ ORIGIN 8 12 16 20 24 28 32 Z Tien-Shan Ankle Tibet07 0 Akeno 0 100 × Ariel-6 (b) CASA-MIA Knee · HEAO-3 HEGRA I m⁻² yr ⁻¹ - Solar system Fly's Eye Relative abundance 1 01 Kascade Kascade Grande Ankle IceTop-73 10 I km⁻² yr ⁻¹ HiRes 1 **HiRes 2 Telescope Array** 10 Auger 10¹⁵ 10²⁰ 10¹⁸ 10¹⁹ 1013 10¹⁶ 10¹⁷ 1014 102 E [eV] 70 80 40 50 60 Z

3

Tommaso Chiarusi - INFN Sezione Bologna

Acceleration mechanism : Fermi's and beyond

High energy interactions are - **so far** - revealed by gamma rays, but **neutrino production should take place...**

•Photo-disintegration: $p + \gamma \rightarrow \Delta^+$ $|\Delta^+ \rangle = \sqrt{\frac{2}{3}} |\pi^o p\rangle + \sqrt{\frac{1}{3}} |\pi^+ n\rangle$

$$p + \gamma \to \Delta^+ \to \pi^o + p$$

$$\pi^o \to \gamma + \gamma$$

66.6 %

$$p + \gamma \to \Delta^{+} \to \pi^{+} + n$$

$$\pi^{+} \to \nu_{\mu} + \mu^{+}$$

$$\mu^{+} \to e^{+} + \nu_{e} + \bar{\nu}_{\mu}$$
33.3 %

Aperitivi Scientifici Sezione di Bologna 22/01/2016

• p-p interactions: (leading ch.): $p p \rightarrow p(n) + m \pi^0 + 2m \pi^{\pm}$

Neutrino at sources: $1 v_e : 2 v_\mu : 0 v_\tau$

6

• Oscillation effect: over cosmic distances, neutrinos have maximum mixing with no oscillation (decohernece effect). On Earth we expect to see $1 v_e : 1 v_\mu : 1 v_\tau$

the Cherenkov detection technique for the neutrino indirect measurement

Very small neutrino cross-sections with matter $\sigma_{vN} \sim 7.8 \ 10^{-36} (E^{0.36}/\text{ GeV}) \ \text{cm}^2$ for $E_v > 1 \text{ TeV}$

Multi-km³ volume size detector for tens events/year

Tommaso Chiarusi - INFN Sezione Bologna

8

Aperitivi Scientifici Sezione di Bologna 22/01/2016

Neutrino interaction signatures

Glashow Resonance

Enhancement of cross-section in the anti- v_e - e⁻ interaction @ ~10⁶ GeV **Good for energy calibration**

Unavoidable background

- Astronomy:
- ↓ $\mu_{\text{atm}} \Rightarrow$ looking for upgoing (1)
- Energy spectrum deformation

 $\nu_{atm} \Rightarrow energy cuts (E>10-100 TeV)$

Quantity of detected light is a good energy proxy. In case of cascades the telescope can act as a calorimeter. Strong demand for large volumes.

Exploiting the background:

 $\mu_{atm} \Rightarrow$ study of sytematics $\nu_{atm} \Rightarrow$ neutrino oscillations

Tommaso Chiarusi - INFN Sezione Bologna

Astrophysical neutrino expected fluxes

Waxman-Bachall reference flux: $\frac{dN_{\nu}}{dE} \sim 9.0 \ 10^{-9} \left(\frac{E}{GeV}\right)^{-2} \left[GeV^{-1} \ cm^{-2} \ s^{-1} \ sr^{-1}\right]$

Under-ice: IceCube (South Pole)

Under-water: ANTARES/KM3NeT (43°North)

pros: low optical bkg due to natural radioactive decays or bioluminescence

cons: poor angular resolution (small scattering lengths)

Tommaso Chiarusi - INFN Sezione Bologna

pros: large optical bkg due to natural radioactive decays or bioluminescence

cons: good angular resolution (large scattering lengths)

12

Recent findings from IceCube

IceCube: for >50 candidates, rejected atm. neutrinos H_0 with significance ranging [3.7 σ - 6.5 σ]

-Energy range: $100 \text{ TeV} \le E \le 1 \text{ PeV}$ for tracks, E > (35) 10 TeV with (partially) contained cascades:

54 HESE events (High Energy Starting Event) analyses imply **vetoing approach**, which reduce the IceCube effective area. Most of them are cascades for which the angular resolution is $>10^{\circ}$

Hot spot in the Galactic Center: ANTARES has excluded at 90% C.L. the possible match of events with point sources (see dedicated spare slide)

A tension at level of $>3.6\sigma$ is apparent.

ANTARES, with full statistics,

- could confirm a signal of diffuse E⁻² flux from the Southern Sky (should be the same);
- is at the edge of sensitivity for expected Galactic Center events.

Compelling request for a larger neutrino telescope in the Nothern hemisphere with optimum angular and energy resolution...

KM3NeT

Tommaso Chiarusi - INFN Sezione Bologna

KM3NeT Europe and KM3NeT Italy

"Nu-Telescope" group (ANTARES - NEMO - KM3NeT)

- Historical group

- **S. Cecchini** : Former ANTARES Quality Manager
- T. Chiarusi : KM3NeT DAQ system coordinator

A. Margiotta : team leader, Montecarlo Simulations coordinator of the ANTARES Coll.

M. Spurio : deputy spokesman of the ANTARES Coll.

L. Fusco : post-doc (diffuse flux analysis)

C. Pellegrino : PhD student (DAQ software and trigger algorithms design)

F. Versari : undergraduate student

in strict collaboration with CNAF people for DAQ design and realization:

- M. Favaro, F. Giacomini, M. Manzali: software design
- L. Chiarelli, S. Zani: networking

Strong support from the Electronics and IT Division in Sezione di Bologna

Fruitful collaboration also with Oceanography Group of UniBo: N. Pinardi, M. Zavatarelli

KM3NeT Europe: 2 sites distributed experiment

The common element is the Detection Unit (DU): vertical structure hosting 18 Digital Optical Modules (DOMs) each one equipped with 31 3'' PMTs and 1 piezo acoustic sensor for the positioning system.

building block (b.b.)=115 strings

Phase	Blocks/ strings	Primary deliverables / site(s)	Funding		
1	0.2/31 7 (Fr) + 24(lt) *	Proof of feasibility and first science results; KM3NeT-Fr + KM3NeT-It sites	Fully funded		
2.0	2/230	Measurement of neutrino signal reported by IceCube; All-flavor neutrino astronomy; KM3NeT-It site	Applications pending		
	1/115	Neutrino mass hierarchy; KM3NeT-Fr site			
3	6+1/805	Neutrino astronomy including Galactic sources; Multiple sites	Future		

(* plus 8 Towers, fully funded as well)

The KM3NeT Europe - Digital Optical Modules (DOM)

31 3" PMTs in 17" glass sphere (cathode area~ 3x10" PMTs)

- 19 in lower, 12 in upper hemisphere
- Al cooling shield (A)
- Central Logic Board (CLB) (B) -
- Front-end electronics (C) "Octopus board"
- 31 PMT bases (total ~140 mW) (D)

High Voltage for PMTs discrimination w.r.t. predefined threshold

1-vs-2photo-electronseparation →better sensitivity to coincidences

Better discrimination of the light due to environmental BKG

Central Logic Board (CLB)

FPGA (Kintex 7) for:

- TDC (time & time over threshold),
- time stamping (1 ns precision);
- interface for time synchronisation (White Rabbit)
- control of calibration devices (I²C bus);
- Ethernet communication;

NOTE: the DOM is a node of a submarine network which is directly connected to the TRIgger and Data Acquisition System LAN, on-shore.

Tommaso Chiarusi - INFN Sezione Bologna

21

Tommaso Chiarusi - INFN Sezione Bologna

Aperitivi Scientifici Sezione di Bologna 22/01/2016

After cuts optimized for track reconstruction

After cuts optimized for cascade reconstruction

(**note**: IceCube ang. resolution about 10°-20°)

Tommaso Chiarusi - INFN Sezione Bologna

Displayed tracks and cascades

Muon tracks (range > 1 km @ 100 GeV)

Cascades

(size O(10 m) -- elongation with LPM effect)

$I.8 \text{ PeV CC } v_e \text{ event}$

Tommaso Chiarusi - INFN Sezione Bologna

Aperitivi Scientifici Sezione di Bologna 22/01/2016

Event numbers (cut&count): 16/9 cascades 7.5/5 track-like (signal/background per ARCA year)

Note:

For each energy, direction and flavour KM3NeT is complementary to IceCube

KM3NeT preliminary - detector with 2 building blocks

The KM3NeT Italy - Optical Module (OM) and Floor Control Module (FCM)

Slow control communication

Slow-control functions (OM power control and monitoring)

Voltage and Current Monitoring

I2C bus, Serial Ports

Flash Read/Write

Full remote safe reprogrammability with multiboot (3 full images + data)

NOTE: in this case, the FCMs are point-to-point connected onshore to custom ASICS (NaNet3) onboard of servers for managing the DWDM data stream

Tommaso Chiarusi - INFN Sezione Bologna

31

DAQ model: all data to shore, triggering on shore

Tommaso Chiarusi - INFN Sezione Bologna

32

Towers:

- -use a **point to point** connections;
- -sinchronous timestamp distribution embedded in a continuous framed (125 us) data stream from on- and off-shore. Maximum supported throughput per Tower 2 Gbps

Point to point link

- Each Floor is assigned a couple of lambdas (rx/tx) in DWDM spectrum Standard component
- Lambda drift monitoring and tuning

Fully synchronous link

Clock, Data and Timing embedde in a single 8b/10b stream Each device is time-stamp aware

Fixed latency

Round-trip time monitoring + pre-deployment calibration

White Rabbit and the Network architecture

Two separate services (enhancements to Ethernet) provided by WR:

- Synchronization: accuracy better than 1 ns precision (tens of ps sdev skew max)
- Deterministic, reliable and low-latency Control Data delivery

Credit: White Rabbit for Time Transfer, Erik van der Bij at TIPP'14

KM3NeT-Europe Hybrid Asymmetric WR network

Taxaa	Expected	Conservative	Maximum	
Iowers	$(v_{single} = 50 \text{ kHz})$	$(v_{\text{single}} = 70 \text{ kHz})$	$(v_{single} = 150 \text{ kHz})$	
10" PMT (0.25 p.e thresh.)	(Mbps)	19.0	26.0	56.0
Floor (6 PMT/Floor)	(Mbps)	110.0	160.0	330.0
Std Tower (14 Floors)	(Mbps)	1600.0	2200.0	4700.0
NEMO Phase 2 (8 Floors- 4 PMT/Floor)	(Gbps)	0.6	0.8	1.8
Full Detector (8 Std Towers)	(Gbps)	12.0	17.0	37.0

				Expected	Conservative	Maximum
		Strings		$(v_{\text{single}} = 6 \text{ kHz})$	$(v_{\text{single}} = 15 \text{ kHz})$	$(v_{\text{single}} = 65 \text{ kHz})$
PMT pulse		3" PMT (0.25 p.e. thresh.)	(Mbps)	0.3	0.8	3.3
		DOM (31 PMT)	(Mbps)	9.3	23.0	100.0
		String (18 DOM)	(Mbps)	170.0	420.0	1800.0
		Phase 1, lt (24 strings)	(Gbps)	4.0	10.0	44.0
	Time	Phase 1,Fr (7 strings)	(Gbps)	1.2	2.9	13.0
		Block (115 strings)	(Gbps)	19.0	48.0	210.0
_	fixed size of hit: 6 B	ARCA (230 strings)	(Gbps)	38.0	96.0	420.0

Note: data throughput from the acoustic positioning system can be of the same order of magnitude.

Technical solution: use \geq 10 GbE networking infrastructure.

But that's not all...

Frame *i* Frame *i*+1 Frame ... Frame *n* A DOM frame contains all data from its 31 PMTs occurring in a TS on shore: the whole TS gathered and processed by one Filtering process

Frame *i*+1

Tommaso Chiarusi - INFN Sezione Bologna

Frame *i*

Probability of a muon

crossing $2 TS < 10^{-5}$

Trigger levels:

Level 0 : all hits before further classifications

Level 1 : find the seeds of simple local coincidences within close PMTs

Level 2 : find combinations of Level 1 seeds and (occasionally) complementary L0 hits

Motivation	Topological Trigger	Simple Causality Trigger	Sky Scan Trigger	Tracking	Stack- Analysis	Vertex / Inertia
muon	~	~	~	~	~	~
cascades	~	~	~	~		~
slowly moving particles	~	~	~	~		~
sources	~			~		~

B. Bakker Thesis, Trigger studies for the Antares and KM3NeT neutrino telescopes, Nikhef 2011

When adding further trigger algos, the processing of a Timeslice gets more time consuming: ADD MORE FILTERING PROCESSES AS IT IS NECESSARY (*Granny* recipe!)

Tommaso Chiarusi - INFN Sezione Bologna

LAN segments for the two Systems

Deployment of the first string at the KM3NeT-IT site

Position of first string

Sicily

Portopalo di Capo Passero (SR)

KM3NeT-IT (3500m deep)

~80Km FO

Tommaso Chiarusi - INFN Sezione Bologna

December 3rd, 2015: deployment of the first string at the KM3NeT-IT site

- •Smooth operations
- •All PMTs alive
- •data taking started immedeately after the deployment

Tommaso Chiarusi - INFN Sezione Bologna

41

Astrophysics with high energy neutrinos is an extremely interesting and still challenging research field

The KM3NeT neutrino telescope has entered its first construction phase:

- Results from prototypes and first string very encouraging
- ARCA & ORCA to follow in 2016-20, sensitivity complementary to IceCube
- Priority science goals:
 - All-flavour neutrino astronomy
 - Measurement of the neutrino mass hierarchy

Exciting physics prospects

Investigate the neutrino sky with unprecedented resolution and sky coverage

Tommaso Chiarusi - INFN Sezione Bologna

Tommaso Chiarusi - INFN Sezione Bologna

hypotesys on the biatomic molecula (such as for H_2): (P_{esc}/ϵ) ~ 1

$$\frac{dN}{dE} = KE^{-2}$$

Taking into account the long path neutrino oscillation, on Earth we expect to see

 $1 \ \nu_e: \ 1 \ \nu_\mu: \ 1 \ \nu_\tau$

Hadronic Model implies a *neutrino-gamma connection*.

$m v_x : n \gamma$

where *m* and *n* can be tuned upon specific assuption, source by source.

This means that astrophysical neutrino fluxes can be estimated via the gamma measurements at given sources.

The not-breaking Feynman's scalying implies $\sigma_{int} = \sigma(p_{//} / p_{prog})$

 $\rightarrow \nu$ flux does not breake the progenitor's energy dependence.

This means that for shock accelerated CR, the corresponding neutrino flux has the same power low dependence ($\sim E^{-2}$).

RX J1713-3946 expectations: $\frac{d N_v}{d E} \sim 1.8 \ 10^{-8} \left(\frac{E}{\text{GeV}}\right)^{-2} \left[\text{GeV}^{-1} \text{ cm}^{-2} \text{ s}^{-1}\right]$

Extragalactic ν sources can be extremely far for resolving them

- → diffuse neutrino flux is expected on Earth.
- → the *neutrino CR* (energy density) *connection*: $\omega_v = \omega_{CR}$

Waxman-Bachall reference flux:
$$\frac{dN_{\nu}}{dE} \sim 9.0 \ 10^{-9} \left(\frac{E}{\text{GeV}}\right)^{-2} \left[\text{GeV}^{-1} \text{ cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1}\right]$$

Tommaso Chiarusi - INFN Sezione Bologna

Detection signatures and Figures of Merit

Figure 4: Solid lines: 90% C.L. upper limits for source spectra between 2.0 and 2.5 and a source declination of $\delta = -29^{\circ}$. The figure on the left contains the values for $\gamma = 2.0$, 2.2, and 2.4, whereas the figure on the right contains the ones for $\gamma = 2.1$, 2.3 and 2.5. Dashed lines: expected flux normalisation of the proposed source as a function of the number of HESE events coming from this source. Values above the solid lines are disfavoured with a confidence level larger than 90%.

Tommaso Chiarusi - INFN Sezione Bologna

WR infrastructure in the Shore Station

The "broadcast" channel (from on shore to offshore) implies an asymmetry for DOM send/return. Since WRPTP uses Ethernet, there has been a deep customization of WR swtich at software and gateware level

Tommaso Chiarusi - INFN Sezione Bologna

ARCA001 Network implementation

Strategy	Building stage	Purposes	Context	operations on DAQ data	Impact on DAQ	requirements of infrastructure implementatio	problems by DAQ design	Feasibility
Correlated events	offline	bundles, VHE/UHE events diffuse flux	correlation of absolute time	none	none	none	none	for free
Correlated DAQ	offline	sgmented events, (any events)	external trigger (follow-up);	none	rate of follow-up, managing of dedicated buffers	shared TriDAS switch fabric	none	medium
Integrated DAQ	online	any	standard triggers	Tower 2 String conversion on HMs	computing power at aggregation stages (HMs)	shared TriDAS switching and computing resources	none	complex

Trigger Levels

Simple Coincidences $\Delta T \le 10 \text{ ns}$

L2 - Simple causality trigger

1. A minimum n. of **consecutive** $L1s \ge N_{th}$ within a ΔT (at least $n_{PMTs} \ge 5$)

2. 3D-causality filter:
$$|t_i - t_j| \leq |\vec{x}_i - \vec{x}_j| \frac{n}{c}$$

3. The trigger is set if the n. of satisfying hits is $\geq N'_{th}$

L2 - Sky scan trigger

- 1. A minimum n. of **consecutive** $L1s \ge N_{th}$ within a ΔT (at least $n_{PMTs} \ge 5$)
- 2. A homogeneous sky survey is done \rightarrow "**rotation**" procedure: $\mu // z$

 $|(t_i - t_j)c - (z_i - z_j)| \le \tan \theta_c \sqrt{[(x_i - x_j)^2 + (y_i - y_j)^2]} = \tan \theta_c |R_{ij}|$

3. The trigger is set if the n. of satisfying hits is $\geq N'_{th}$

- 1. From **GPS** time of timeslice → **source direction**
- 2. L1 preselected events with even one seed are accepted.
- 3. All hits of each event are tested with the "rotation" procedure (road-width R_{max} restriction w.r.t. direction)
- 4. A cluster is formed when found N_{min} consecutive hits, L1 seed included.
- 5. If **time-overlap** among clusters \rightarrow **clusters are merged** into one only bigger cluster.
- 6. **Small clusters** are treated with a **quick reconstruction** (to avoid accidental clustering of bkg)
- 7. The trigger is set if PMT surface density (w.r.t. the convex hull \perp direction) $\geq \sigma_{th}$

L2 - Vertex splitting trigger

- 1. Subdividing all the event hits in 2 time splitted groups
- 2. Vertexes reconstruction and vertex position discrimination
- 3. "Inertia" tensor eigenvalues ratio

$$I^{k,l} = \sum_{i=1}^{N} A_i (\delta^{k,l} \mathbf{r_i^2} - r_i^k r_i^l), \qquad \qquad \mathcal{T} = rac{I_1}{I_1 + I_2 + I_3}.$$

inspired by IceCube

L2 - Follow-up trigger

... Buffering in the DataFilter offline stack-analysis