Cross section study of the $^{13}\text{C}(\alpha,\text{n})^{16}\text{O}$ reaction at low energy (LUNA collaboration)

GIOVANNI FRANCESCO CIANI
INFN-GRAN SASSO SCIENCE INSTITUTE
GIOVANNI.CIANI@GSSI.INFN.IT
MAIN STEPS

- Physical motivation
- Why underground?
- Study of a possible detector
NUCLEOSYNTHESIS PROCESS

- Big Bang Nucleosynthesis (BBN) for lighest nuclei (H\(^2\) - Be\(^7\))
- A<56: Nuclear fusion (PP, CNO, NeNa, He-Burning…)
- A>56: neutron capture (r o s process) or proton capture (p process)

Neutrons captured in s processes are mainly produced in the reaction*
\[^{13}\text{C} (\alpha, n)^{16}\text{O} \quad (Q=2.216 \text{ MeV}) \]
In low mass stars (3 M\(_{\odot}\)) in the Asymptotic Giant Branch (AGB)

In this reaction fast neutrons (\(E_n \approx 2 \text{ MeV}\)) are produced,

*Burbidge, Burbidge, Fowler, Hoyle, Rev. Mod. Phys. Vol 29 (1957), 547-650
THE MEASUREMENT @ LUNA (LNGS)

- Direct kinematic
- Alpha beam (400-200 KeV)
- Enriched 13C solid target (10^{18} atoms/cm2)

Reaction rate expected at $E_{\text{beam}} = 200$keV

10^{-4} counts/h!!!!

(assuming:
$\langle I \rangle = 200$ μA
detection efficiency of 100%)

Underground measurements are needed in order to screen the measurement from natural background (cosmic rays, natural radioactivity)
(At LNGS 10^{-6} flux of muons, 10^{-3} flux of neutrons respect to the surface)
Liquid organic scintillators are sensitive to both fast neutrons (elastic scattering np) and electrons (Compton scattering).

A Pulse Shape Discrimination (PSD) process is needed, in order to select events of our interest.

\[N(t) = C_s \cdot e^{-(t/\tau_s)} + C_f \cdot e^{-(t/\tau_f)} \]
INTEGRATION RISE TIME (IRT)

\[FOM = \frac{\Delta \text{peak}}{FWHM_g + FWHM_n} \]
HIGH THRESHOLD VARIATION

FOM vs High Level

- 500 Msample/s
- 2 Gsample/s
GEANT4 SIMULATION EFFICIENCY
COMING SOON

- Underground background neutron measurements
- Study for slow neutrons detection