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Interference

It is a typical phenomenon associated to waves. In general it is the superposition
of two or more waves that form a new wave. The intensity of the resulting wave is
in general different from the sum of the intensities of the original waves.

Usually we talk about interference when the superposing waves are coherent, i.e.
if they have a constant phase relation between them.

However, it is possible to observe several interference phenomena in nature
wherein light is not (fully) coherent to some extent.--.




Light waves: some definitions
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v: frequency (= 4.5-101*Hz + 7-10%*Hz)
A:wavelength (= 400nm + 800nm)
c = VA: Speed of light in vacuum (= 3-103m/s)

In @ medium with refractive index n the speed of light is:

V="0/ T8 ‘ A, =A/n Optical path: p =d ' n



Light waves

Generally speaking, light is a transverse electromagnetic wave
propagating through free-space.

To describe light propagation it is sufficient to consider the
electric field at any point.
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21V = w: circular frequency
21t/ A = k: wavevector

E(x,y,zt) = Re[ . gl0]

E,e'® = A: complex amplitude



Intensity in an interference pattern

E(x,y,z,t) = Re[A - e'®t]
I oc |A)? : Intensity (time-averaged Poynting vector)

Assumptions:

1. Two waves are propagating in the same direction
2. They have the same frequency

3. They are polarized with their fields in the same direction

When the two waves superpose the resulting complex

amplitude is the sum of the complex amplitudes:
A=A, +A4,

IOC|A|1? = (A1 + A,) (A5 + A3) = |A |2+ 1AL]2 + A, - A5 + A - A,
=1+ L, 4QVIi, - Cos(gal—D

Interference term




Intensity in an interference pattern

I=1 + I + 2V, 1, - Co

If the two waves have the same phase at the origin, then
A@ corresponds to a path difference:

A
Ap = GD)Ae
Or equivalently to a time delay:
Ap
(2 ) L1 AAAAA

If A varies linearly in the observatlon plane, then the intensity
varies cosinusoidally, giving rise to alternating bright and dark bands,

known as interference fringes.
Fringes: Loci of constant phase difference




Visibility of the fringes

[=1+ I, + 2V1,1, - cos(Ag)

When Ag = 2mn and Ag = (2m+1)mrt the intensity in the interference
pattern has its maximum and minimum values:

Imax — 11 + 12 + 2 11]2 Imin —_ Il + 12 - 2 1112

We define the visibility of the fringes V by the relation:

7 — Imax_lmin o<V <1

Imax + Imin

2./ 111,
|/ = T > Gwhen IF)




Coherence of quasi-monochromatic light

Coherence theory is a statistical description of the radiation field
due to a light source, in terms of the correlation between the
vibrations at different points in the field.

Quasi-monochromatic light: a source emitting light with a narrow
range of frequencies.

The electric field at any point radiated by a quasi-monocromatic
light can be written as:

V(t) = Jooa(u) exp{i|2mvt — @(v)]} dv
0
T

I = lim 1/2Tf V)V (t)dt = V()V*(t))
T—oo _T



The mutual coherence function

A quasi-monochormatic extended source S illuminates the screen
containing two pinholes A; and A,.

V,(t)and V,(t) are the wave fields produced by S at A; and A,.

The wave field in P will be:

Vp(t) = KiVi(t —t1) + KVo(t — ¢3) Ja/‘

I Source L‘,—-
K, and K,: geometrical factors ig
(4]
b= —

C
Since the wave field is stationary: Dessrement

Vp(t) = K Vi(t + 1) + KVo(t)
T = tl ~ tz



The mutual coherence function

The intensity in P will be:
Ip = (Vp(®)Va(D))
= | K lh:f | rﬂlf —I—Tj + | &Ko ‘ﬂfﬂ“;‘ui”‘['r'],.
- K fT‘iz'.,E"i.“ + )V [;}I: + K ﬁ.g-..i:l (f + 1) V5 (1)]

K\ 120 + | Ko 1y {-Elff]fﬁf::ﬂt‘-.-

|, and ,: intensities at A, and A,

Mutual coherence function

[,(0) = (V1 (t + V5 (1))



Visibility of the interference fringes

Ip = |K11* 1 + | K2|* I + 2| K1 Ka [Re{T12(7) ],

We can write the equations as:

Ip =1p, +1p, +2 /Ipllsze{hz(T)}

Where Ip, = |K;|%I; are the intensities due to the two pinholes acting

I'12(7) .
ik, is called the complex degree of

coherence of the wave fields at A; and A,.

separately, and y;, (1) =

When I; = I, then the visibility of the fringes is:
v = Re{y12(7)}



Spatial coherence (extended sources)

Neglect the time delay ©

When the difference in the optical paths is the visibility of
the fringes depends only on the spatial coeherence of the fields.
We can evaluate the degree of coherence between the fields at
points P, and P, as follows:

* We first obtain an expression for
the mutual coherence function of
the fields at these two points due s [
to a very small element on the
source.

* We then integrate this expression
over the whole area of the
source




Spatial coherence (extended sources)
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Interference Equation:

The (ensemble or time) averge 1nteu51tv I(a), at o is due to the superposition
of complex aIIlplltlldESV(Xl) and V(x,) arrwmg at X, and X,.

(propagation constant K is omitted in the following derivation)
I(a) = ﬂumf) _ <\V(x )+ V(x, )!2}
- \\V(x )| (\V(x )\ + me(v' (x,)V(x, ;->

=1,(a) + I, (a) + 2/G , |cos g,

o ( v, V, >

=1, +1; + 2“"."[|[2g12 CosQ,,, where g,, =

2411,

[—

(I +I)

—(1+Bg12 cosr;pRXI +1 ) where B =



Spatial coherence (extended sources)
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Assume the source is divided into elenments d&,,d&,, ... etc. at &, &,, ... ete. If V., (X, )and
Vm(X2) ire elemental complex amplitudes at x; and x, due to the element d¢_, then the
total disturbances, neglecting the propagation constant, are:
V(x)) =2 Vi (x1) and  V(xp) = 2, Via(x)
V(1) = Zn UGmlexp(-HEaXilf) V(%) = o UEmlexp(-K Endpl)



Spatial coherence (extended sources)
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Then the correlation function becomes:
G(x1,%;) = <V (x)V(x2)>
= <Zn (Van()} " Zm Vinalx)>
= Zo< {Vim &)} Vina(%2)> + T Z<{Veni(x1)}” Via(%2)>



Spatial coherence (extended sources)

For incoherent source points, when m # n, the correlation is zero, or
G(x1.%) = T { Vet (X1} Via(%)>
= Zon< U (Emexp(ik &mx/f) UEm)exp(-ik Enxs/f)>
= Zn < U'(Em) UEm)> explik En(x,-X,)/)
= 2 IEmexp(ik £ (x-x)//).
For a continuous source we replace the summation by an integral,

G(x:%2) = JI(Em)exp(ik Eq(x,-X,)/f) dE.

This is the Fourier Transform of the intensity function and is functionally simular to the
Fraunhofer diffraction pattern. For a one-dimensional rectangular source of uniform
intensity A and of width 2a, the correlation function is integrated over the source

yielding:

G(}{],}{l} =2Aa SIHC[ ka(KE'KI}}T].



Spatial coherence (extended sources)

The resulting expression is similar to the Fresnel-Kirchhoff diffraction
integral and leads to the van Cittert-Zernike theorem, which can be
stated as follows:

* Imagine that the source is replaced by an aperture with an
amplitude transmittance at any point proportional to the intensity
at this point in the source.

* Imagine that this aperture is illuminated by a spherical wave
converging to a fixed point in the plane of observation (say P,) and
we view the diffraction pattern formed by this wave in the plane
of observation.

* The complex degree of coherence between the wave fields at P,
and some other points P, is then proportional to the complex
amplitude at P, in the diffraction pattern.




Spatial coherence (extended sources)
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Temporal coherence
(polychromatic sources)

For a point source radiating over a range of wavelengths, the
complex degree of coherence between the fields at P, and P,
depends only on T, the difference in the transit time.

The mutual coherence function then reduces to the

autocorrelation function:

[ (0) =Vt + DV (1))
The degree of temporal coherence can be written as:

W+ V(D)
N TOTAO)




Coherence length

The frequency spectrum of a source radiating in a range of
frequencies Avu can be written as:

S(v) =rect [

U—I_)]
Av

The autocorrelation function is given by the Fourier Transform of the
frequency spectrum:

¥11(7) = sinc(tAv)

Which drops to zero when TAv = 1.

The optical path difference at which fringes disappear is Ap = £

Av



Key Concepts

The temporal coherence time is the time the wave-fronts remain equally
spaced. That s, the field remains sinusoidal with one wavelength:

Wavefronts

S £ ®8 £ ® £ =& £ sLa

Temporal E EEE E E E E E E EEE
| | I | | I
Coherence K L] | | ]
= .....................+ | | I | | I
Time, T, I I I | | I
VL ‘ | Lol

Tc

The spatial coherence length is the distance over which the beam
wave-fronts remain ‘flat’:

Wavefronts ,
Since there are two

transverse
Coherence _ )
Iength dimensions, we can

E

R

min
min

Spatial

Coherence
Length —>

define a coherence
area.



Key Concepts

The van Cittert-Zernike Theorem states that the spatial
coherence area A, is given by:

D?A°
A= :
7d
where d is the diameter of the light source and D is the distance

away.

Basically, wave-fronts smooth
out as they propagate away

from the source.

Starlight is spatially very coherent because stars are very far away.



Two-beams interferometers

To make measurements using interference, we usually need two
beams travelling along different paths, and an optical setup that
makes them interfere.

The two beams, that we call the reference beam and test beam,
must have the same frequency.

In order to produce a stationary interference pattern, the phase
difference should not change with time.

The simplest way to meet this requirement is to derive the two
beams from the same source.

oy —

Wavefront division Amplitude division




Wavefront division: the Young’s
experiment

Huygens — Fresnel Principle: Each
point on the wavefront acts as a d
secondary source of a spherical
wave.

C
Small apertures in an opaque
screen can be seen as coherent &

F

light sources

The Rayleigh interferometer is
based on wavefront division | | |

{2 |
e
< |




Wavefront division: localization of
the fringes

Schermo

S1 and S2 are two coherent and
sincronous sources

E{(r,t) = Eycos(k-ri — wt)
E,(r,t) = Ejcos(k - 5, — wt)

In P the resulting intensity will be:

I(p) = 2|Eo|* + 2|Eq|cos(Ap)

Where Ap = 2%Ap = k(rqy —15)



Wavefront division: localization of

the fringes

When D > a,—» ry — 1, = a - sin(6)

21T
I(p) = 2|Ey|* + 2|Ey|cos[—a - sin(0)

A
The maximum of intensity occurs when:

[
Iyax & —a-sin(f) = 2mmn

A
$ mAD
r{— Ty =MA X =

a
The minimum of intensity occurs when:

[
Lyiy — A sin(f) = (2m+ )m

UL mL T = (ng_l)}\ X = (Zm‘l‘ 1)}2\—2

]

x =D -sin(0)

Schermo




Superposition of coherent waves:
sum of phasors

Two waves are coherent if they have the same frequency and
a time-invariant phase difference

When two coherent waves superpose in a point and they have
the electric field in the same plane, we can use the phasor
method to sum them.




Superposition of coherent waves:
sum of phasors

The resulting amplitude is the sum of the projections of the
amplitudes.

Epr = E{ + E, = E;sin(wt) + E, sin(wt + @)

Where @ is the phase difference of the two waves. The maximum
intensity will occurr when the two vectors are aligned (¢ = 2mn)




Interference of several coherent
sources

We consider several coherent sources
equally spaced

The maximum of intensity will occur
when all the vectors are aligned, i.e. when s

Ap = 2mn

[
Lyax — - sin(f) = 2mm

Asse di riferimento

Injax < N?A?




Interference of several coherent

sSources

When the vectors form a
closed loop, the resulting
amplitude is zero.

This condition is satisfied

when

2m'T
N

m=12,...N=1),(N+1),......

Np =2m'nm - ¢ =

2T

b = 7(: Sin@ = sinl@ = ——

2N -=1),(2N +10),....

m'A
Na

N=3
d=023) 1
T N=18
< d =m/9
N,




Interference of several coherent
sources

max

27 mA
a sin @ =i 5inl =

b =
|

. o /\ f\fm/\/\mﬂ
<I>—7(1 sin @ === s5inf = \_/\A/ \/\/;L\
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Diffraction gratings

Monochromatic light White light
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: Order -1
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Diffraction gratings
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Two-beams interferometers

To make measurements using interference, we usually need two
beams travelling along different paths, and an optical setup that
makes them interfere.

The two beams, that we call the reference beam and test beam,
must have the same frequency.

In order to produce a stationary interference pattern, the phase
difference should not change with time.

The simplest way to meet this requirement is to derive the two
beams from the same source.

oy —

Wavefront division  Amplitude division




Amplitude division techniques

Beam splitters
It is basicaly a partially transmitting mirror.

The incident beam (1) is partially transmitted (2) '
and partially reflected (3)

Usually it is a dielectric mirror with 50% of IE
transmitance and 50 % of reflectance

It separates unpolarized light into two

T P = |

= - S
Polarizing prism (wollastone prism) : E — j B
polarized beams I

Diffraction gratings
The number of beams and the output

angle depends on the periodicity of the
grating | =

Transmission Grating Diffracted Orders




Mach-Zehnder Interferometer: setup

A Mach Zender interferometer is consituted by two beam splitters
and two mirrors.

A collimated beam is splitted into a reference beam and a test
beam.

A variation of the optical path in one of the arms produces a phase
difference between the two beams

mirror beam splitter 2
/ |
path A
screen
path B /

Laser beam splitter 1 mirror




Michelson Interferometer: setup

Input

The Michelson Interferometer splits a beam beh

into two and then recombines them at the

same beam splitter. "WMW"‘
Output

Mirror beam

Beam-
The most obvious application of the splitter
Michelson Interferometer is to measure the l Delay
wavelength of monochromatic light. Mo

| =21 {1+cos(kAL)} = 21 {1+cos(27 AL/ 1)}

AMIAAIRATATAN

AL=2(L,-L,)




Multiple beam interferometers:

Fabry-Perot

A Fabry-Perot cavity is constituted
by a pair of semi-transparent
mirrors

- Multiple reflections between
mirrors produce interference
between multiple «output» beams

- The final amplitude can be
computed by an iterative
application of the Fresnel’s law of
reflection

1
partially fransmissive mirror

— "
| _I_-.-EI
_|-_=_E,

O



Multiple beam interferometers:

Fabry-Perot
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Multiple beam interferometers:
Fabry-Perot

I=1,

(1- &Y

2 . of 27d)
(1- R) —I—4-R-sm1 & |

i
-

rel. intensity /g

N

M J
0.0

J

R=50%

L,H 96 %

|

N

1 2
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As for N-wave interference,
maxima peak are narrower for F-P
interferometer as compared to e.g.
Michelson or Mach-Zehnder
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Multiple beam interferometers:

Fabry-Perot

Ay
d= ﬂ'? Resonance condition
A —3 ="""E=}"1';I'1
T g 2-
&
ov=——
2-d

Free Spectral Range (FSR)

1/2{Imax-Irmin}

RTRRE| =X & L

=
-

-———FSR—=

Finesse

i.e. frequency resolution



Classical interference microscopy

Two beam interference microscopes are available using optical
setup similar to the macroscopic interferometers.

A very precise measurement of the phase shift can be made
by digital phase shifting.

Surface profiles can be measured with very high accuracy
(down to 1nm).

A complex post processing of the images is required.



u-Mach-Zehnder configuration

The interference pattern
produced contains mixed _— D)
information about the phase B o —
difference and the amplitudes
of the beams, but not about
the absolute phase of the test ——— *
beam

It is possible to retrieve the
absolute phase shift produced
by the specimen



Digital Phase Shifting

The movable mirror
changes the optical path
difference in steps of A/4

The digital camera records
the intensity values in
each point

Piezo-actuated

m i rror Expander

Collimated
lens




Digital Phase Shifting

Complex amplitude of the test wave:
A=aqae ®
And reference wave:
B = be 'R
In a given point the intensity will be:
1(0°) = a? + b% + 2ab cos(p — @g)
1(90°) = a® + b? + 2ab sin(p — @g)
1(180°) = a? + b* — 2ab cos(¢ — @p)
1(270°) = a® + b? — 2ab sin(@ — @)
The phase difference is then given by:

_ 1(90°) — 1(270°)
tan(p — @g) = 1(0°) — 1(180°)




Digital Phase Shifting

Systematic errors can arise from:

1. Miscalibration of the phase steps

2. Non-linearity of the photodetector

3. Deviations of the intensity distribution in the interference
fringes from a sinusoid, due to multiple reflected beams

Such errors are unavoidable, but can be minimized adding phase
steps in the algorithm.
An example is the 5 steps algorithm:

2[1(90°) — 1(270°)]
21(180°) — 1(360°) — 1(0°)

tan(p — @g) =




Example: In-plane laser focusing

Phase distribution

Amplitude distribution
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Example: longitudinal focusing by a microlens
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Limits of laser interferometers:
Stray light

Stray light: Light reflected or scattered from various surfaces
in the optical path is coherent with the main beam and adds
vectorially resulting in a phase error




Limits of laser interferometers:
Speckles

The high degree of coherence of laser light may result in some
practical problems:

Speckles: spatial noise due to scattered light that produces random
diffraction patterns




How to deal with coherent light in
complex media

A complex medium is a transparent medium whose refractive
index varies randomly in the space, producing diffusion of light
that randomizes the information




Mean free path in turbid media

The Mean Free Pathisthe a
average distance between
two scattering events

TMFP

4
v

—» |MFP |e—
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Imaging in complex media

When coherent light passes through highly scattering media, the
information is scrambled into disordered interference patterns
called 502cl

Different techniques have been developed to take advantage from
the scattering in order to retrieve information about the inner
structure of the complex media




Wave propagation in scattering media

The propagation of light is described by a wave equation
describing the wave field evolution in space and time:

n(r)2 92W(r, t)
c2 02t

V2W(r,t) =

Where W represents the electric field (polarization degree of
freedom is neglected for simplicity)

Scattering is caused by local variations of which can occurr
due to the presence of small dielectric particles

In homogeneous media, is constant and the solutions are
the wave’s normal modes, such as the plane waves



Wave propagation in scattering
media: spatial degrees of freedom

For a given surface A, only a finite number of indipendent
transversal modes can carry energy from the surface to free-
space:

N, ~ 2mA/)\?

Visible light has about 10 million indipendent transversal modes
per square millimiter.

Any incident wave can be decomposed into these modes, that
therefore correspond to the spatial degree of freedom of the
incident light field

The transversal modes represent the basis vectors of the
transmission matrix of the sample (spatial degrees of freedom)



Wave propagation in scattering media:
frequency degrees of freedom

The ability of focusing thurough scattering media by interference
effects is connected to the speckle correlation function

The typical time a photon spends into a medium of thickness L is:
Tp = Lz/lve

Where [ is the mean free path and v, is the mean speed of
propagation in the medium

In an open medium, solutions can be expanded into quasimodes

with frequency width dw = =

(3))
Two waves whose spectra are separated by less than dw will
produce a strongly correlated pattern



Wave propagation in scattering media

At the surface, speckle
correlation decays at a distance

5 A
" 2n(r)

Which is the typical speckle
dimension

Control over the spatial and
frequency degrees of freedom

c c Figur Speckle correlati in d frequency. When a white-
Of the |nC|dent beam a”OWS tO ';Tt te»t:alm‘i)seicrr:?drc:—zt -:na; r?.:jtipls;\?:cc:t?:r‘n;?w?egiucn); frecu?‘:nc*,'

: . components that are spaced more than the correlation frequency dw give
CcoO nt rOI the tra nsMmMmissive rise to uncorrelated speckle patterns. The blue and red patterns symbolize
c g frequency components spaced by dw; the green pattern is intermediate.
p o pe rt|es Of th e med ium Spatial correlations are lost when the beam is moved by more than one
correlation width (the ‘speckle size"). The speckle correlation graph
shows how speckle correlations are lost as the beam is moved in space or
frequency.




Wave propagation in scattering media

The description is valid for several kinds of waves, from acoustic
to microwaves, but there are differences in the hardware that
allows to control the degrees of freedom:

* For ultrasound and radiofrequencies, it is possible to
reconstruct broadband wavefronts, but with limited spatial
resolution

* In the optical regime, CCD and Spatial Light Modulator (SLM)

allow for high spatial control but with narrow frequency
bandwidth



Spatial degrees of freedom to
control light

The local transmission function of the scattering sample can be
measured by collecting the speckle pattern produced by a known
beam in different positions




Spatial degrees of freedom to
control light

Each incident mode gives rise to a different interference pattern
behind the sample




Spatial degrees of freedom to
control light

By measuring the intensity on a target
it is possible to have a feedback

A plane wave incident on the sample
produces a speckle pattern on the
target

An SLM is used to optimize the phase
of thousands of incident modes

The feedback loop allows to optmize
the phase modulation in order to
achieve constructive interference on
the target




Acoustic Phase Conjugation

ULTRASONIC PULSE ECHO FROM STONE TIME-REVERSED WAVE



Wave propagation in scattering media

The microscopic wave equation exhibits time-reversal symmetry:
If W(r, t) is solution, then W(r, —t) is solution too.

Scattering from a stationary disorder does not break the time
reversal symmetry
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Optical Phase Conjugation

Scattering processes are time-reversable: if we are able to collect
phase and amplitude of the scattered field completely and
reproduce a backpropagating field with same wavefront, this field
should retrace its trajectory across the scattering medium and
recover the original input field
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Wavefront Analysers

Principle of Wavefront Analyzer ll.' Principle of Wavefront Analyzer IIJ
Sub-divide the wavefront
with micro-lenslets. Micro-lenslet

Local slope determines spot array
position on video sensor.

Displacement of spots from
reference grid indicates local Micro-lenslet
slope of aberrated wavefront. / array
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Video sensor Perfect vo/avefront
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Video sensor Aberrated Wavefront

A microlenslet array focuses each section of the incoming
beam onto CCD

Dislocations of the focal spots from the ideal position
correspond to wavefront distorsions



Frequency degrees of freedom to
control light

The spatial degrees of freedom provides great flexibility in
controlling the propagation through scattering media

The drawback is that wavefront shaping only works for a narrow
bandwidth

The effect of optimization is lost when the source is detuned of a
frequency larger than the speckle correlation function

Frequency can be seen as an indipendent degree of freedom to
control waves in time



Frequency degrees of freedom to
control light

LB

By tuning the source at different frequencies different
uncorrelated speckle patterns are obtained

By tuning the phase and amplitudes for the different components
makes it possible to control the relative phases and amplitudes of
the frequency components



Frequency degrees of freedom to
control light

If a short pulse is transmitted through a scattering sample, the
phase of the pulse can be optimized to produce constructive
interference in a give point and at a given time
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Non-invasive imaging through opaque
scattering layers

A 50 um fluorescent object S
is hidden behind a thick (d

= 6mm) opague scattering

layer that completely hides
it

A laser shines the
scattering layer producing a
speckle pattern that
illuminates the object

AjIsuaju) pazijeuon

The fluorescent signal is
collected

o

J. Bertolotti et al., Nature 491, 232-4 (2012)



Non-invasive imaging through opaque
scattering layers

The original image can be retrieved by inverting the autocorrelation
function, for example by using a Gerchberg-Saxton iterative
algorithm

a Hidden object b Retrieved object
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J. Bertolotti et al., Nature 491, 232-4 (2012)
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