Low energy reaction mechanism studies with weakly bound nuclei at LNS

Pierpaolo Figuera INFN-Laboratori Nazionali del Sud

Outline of the talk

- Motivations
- Experimental methods and related problems
 - Elastic scattering and direct reactions
 - Fusion reactions
 - Perspectives

Collisions around the barrier induced by halo and/or weakly bound nuclei

Characteristics of the projectiles: Low break-up thresholds, diffuse tails ↓

Coupling to continuum effects expected to be important.

Direct mechanisms (e.g. break-up, transfer) expected to be important.

What do we expect for fusion reactions?

a)Static effects: diffuse tail affects the shape of the potential

b) Dynamic effects: coupling not only to bound states but also to continuum

c) Contribution of Incomplete Fusion (ICF) can be important

Experimental techniques for elastic and direct reaction measurements

Aim: measure charged particles in single and coincidence with low intensity beams Need for: large solid angles + good granularity ⇒ wide use of segmented Si detectors

CLAD Detector

CT 2000 Scattering Chamber

CLAD: 6 5x5 cm Si Telescopes. DE: 20μm SSD 16 strips or 50μm 4 sector detectors ER: 1000μm DSSD 16 strips/face (micron W1)

Interstrip events: reduced amplitude and inverted polarity Is the full energy efficiency equal to the geometric one?

Various tests performed on MICRON W1 DSSSD 1000,500,75 µm

Efficiency for full energy detection

Usual event selection procedure imposing E(Front) = E(Back)

Efficiency for full energy detection can be different than geometrical one and can depend on particle energy and detector operating conditions. If we are interested in knowing the absolute efficiency detector has to be characterised

Study of the effective interstrip width and its dependence on operating conditions

What is the origin of these phenomena?

Example: effective front interstrip width studied with a p μ beam (1000 μ detector, Ep=1.7 MeV \rightarrow range 35 μ m)

Experimental techniques for $\sigma_{FUS}(E)$ **measurements**

Problems: : low σ_{Fus} and beam intensities, Direct ER detection impossible \rightarrow Activation techniques widely used !

In our fusion studies: Detection of atomic X rays following EC decay of the ER. By measuring the activity curves associated to he different Kα lines cross section of the different ER identified in Z and A can be extracted.

Problem: Beam energy distribution inside the targets increases due to energy straggling and target non uniformities

Example

¹²⁰Sn target ~ 0.7 μ m (0.5 mg/cm²),

Size of grains up to 2 μm on Sn

Measuring $\sigma_{FUS}(E)$ with large beam energy dispersions

 $E = (E_i + E_f)/2$

⁹Li+¹²⁰Sn Simulation results

$$\sigma_{mean} = \frac{\int \sigma(E)D(E,t)dE}{\int D(E,t)dE}$$

$$E_{mean} = (E_i + E_f)/2$$

$$E_{eff} = \frac{\int_{E_i}^{E_f} E \cdot \sigma(E) \cdot D(E) dE}{\int_{E_i}^{E_f} \sigma(E) \cdot D(E) dE}$$

⁹Li beam of 28 MeV impinging on a stack of 5 ¹²⁰Sn targets 5 mg/cm² each followed by a ⁹³Nb catcher/degrader 1.5 mg/cm² thick.

⁹Li at 17 MeV average energy with different FWHM impinging on a 0.5 mg/cm² target

Plotting the measured σ_{mean} (E) vs E_{mean} or E_{eff} may generate large errors.

For more details and possible problem solutions see M.Fisichella et al. PRC in press

A possible deconvolution procedure to extract $\sigma(E)$

For each target i we measure

$$\sigma_{mean,i} = \frac{\int \sigma(E) D_i(E,t) dE}{\int D_i(E,t) dE}$$

We look for a function gu(E,μ) (with μ parameters to be determined) which best reproduces the real σ(E). We calculate

$$gu_{mean,i} = \frac{\int gu(E,!)D_i(E,t)dE}{\int D_i(E,t)dE}$$

We find the best parameter set by minimizing

$$S = \left(\sum_{i} \left(\frac{\sigma_{mean,i} - gu_{mean,i}}{\beta_{i}} \right)^{2} \right)$$

Possible 'Wong like' guess function gu(E,µ) with parameters A,B,C

$$gu(E, \underline{!}) = \frac{A}{E} \ln \left(1 + exp(B(E - C)) \right)$$

Elastic and direct processes with WB beams. Disappearance of Threshold Anomaly in the Optical Potential: The ^{6,7}Li+⁶⁴Zn case

M.Zadro et al., to be published and PRC 80,064610, (2009)

Elastic and direct processes with WB beams: Coupling to continuum effects on elastic AD and elastic barrier distributions

Elastic scattering AD and the barrier ditribution extracted from the elastic backscattering excitation function can be reproduced only taking into account explicitly coupling to continuum within the CDCC approach.

J.P. Fernandez Garcia et al. PRC 92,054602,(2015)

Elastic and direct processes with WB beams. Suppression of elastic and enhancement of total reaction with halo nuclei: the ¹¹Be+⁶⁴Zn case

Reaction cross-sections: σ_R^9 Be $\approx 1.1b \sigma_R^{11}$ Be $\approx 2.7b$

The Suppression of elastic scattering can be reproduced within the OM including a DPP with a very large diffuseness or taking into account explicitly coupling to continuum within the CDCC frame. Large enhancement of total reaction is linked with a measured large yield of ¹⁰Be due to transfer and breakup

A. Di Pietro et al. Phys. Rev. Lett. 105,022701(2010); Phys. Rev. C 85, 054607 (2012)

⁶Li+⁶⁴Zn heavy residue relative yields: is CF dominant? Is d or α capture from ⁶Li important ?

• ICF $E^* \sim (E_{cm} - S_{\alpha})x(m_{clu}/m_{proj}) + Q(Clu+64Zn)$

• Cluster transfer $E^* \sim Q_{gg} - Q_{opt}$

1n or 1p transfer leading to ⁶⁵Zn and ⁶⁵Ga can also contribute

Above barrier CF dominates Below the barrier different processes dominate Integrating the HR yield does not provide Total Fusion Cross sections

A.Di Pietro et al. Phys. Rev. C 87, 064614, (2013)

The ^{6,7}Li+^{120,119}Sn fusion reaction

CN evaporates only neutrons \rightarrow CF/ICF separation with charge identification

M. Fisichella et al. PRC to be published

Measuring ICF probability for ²⁸Si+⁹Be

Goal: separate CF and ICF in a collisions involving WB nuclei on light partners via kinematical analysis of ER velocity spectra.

Rebuilt the TOF spectrometer on the 40 degree beam line of LNS for mass and charge identification

Data analysis just started

Acceleration of long lived RIBs at the LNS Tandem: ¹⁰Be tests

Why 10 Be ? $T_{1/2}$ = 1.5 10⁶ y \rightarrow no radioprotection problems; Interesting for structure and reaction studies (LOI supported by LNS PAC)

Main problem: Very small amount of ¹⁰BeO on the source cathode (~0.5µg) **Need for :** optimization of cathode preparation procedures and source parameters

Tests suggest that post accelerated ¹⁰Be currents around 10⁷ pps should be possible with cathodes containing 0.5 μg ¹⁰BeO

Summary and perspectives

Several structure effects on the reaction dynamics observed with halo and stable weakly bound nuclei around the Coulomb barrier

• Strong suppression of elastic scattering and enhancement of σ_R with halo nuclei

• Coupling to continuum effects observed with stable weakly bound on the elastic angular distributions, energy dependence of the optical potentials, quasi elastic barrier distributions.

- Clear effects of n-halo structure on fusion observed
- Suppression of CF above barrier on heavy targets

But still many open questions and need for several more experiments both with stable beams and RIBs...

- p-halo n-halo differences on reaction dynamics? => new data needed
 - Dependence of CF suppression on the target mass ?
 - Competition between CF, ICF and transfer
- Influence of transfer channels on subbarrier fusion not completely clarified

Collaboration

Full energy efficiency in segmented Si detectors Particles hitting the interstrip region can generate signals with reduced amplitude or inverted polarity

(e.g. : Yorkston, NIM A262 (1987) 353; Blumenfeld NIM A421 (1999) 471 and many others)

Is the full energy efficiency equal to the geometric one? Various tests performed on MICRON W1 DSSSD 1000,500, 75 μm (D. Torresi et al .NIM A713, 11, (2013) and L.Grassi NIM A 767,99,(2014))

For front strips this is no more valid and inverted polarity signals are generated.

Efficiency for full energy detection

Efficiency for full energy detection can be different than geometrical one and can depend on particle energy and detector operating conditions. If we are interested in knowing the absolute efficiency detector has to be characterised

Study of the effective interstrip width and its dependence on operating conditions

What is the origin of these phenomena?

Effective interstrip width studied with a p μ beam (1000 μ detector, Ep=1.7 MeV \rightarrow range 35 μ m)

Effective interstrip width studied with a p μbeam (1000 μ detector, Ep=1.7 MeV → range 35 μm)

Effective interstrip widths more than twice as the geometric ones observed

Effective interstrip width studied with a p μbeam (75 μ detector, Ep=3.0 MeV → range in Si 90 μm)

Simplified simulations

In a system of n electrodes the motion of a charge q_0 from position A to position B induces on the i-th electrode a charge

 $Q_i = q_0(\psi_i(B) - \psi_i(A))$ with ψ_i weighting potential associated to electrode i

Origin of inverted polarity pulses

Particles hitting the left side of interstrip: h (collected at F_i) and β (collected at B) both induce positive signals on F_i

<u>Particles hitting the rigth side of interstrip:</u> h (collected at F_j) induce negative signals on F_i β (collected at B) induce positive signals at F_i cancelling the one of h.

Build up of positive charge at the Si-SiO₂ interface in the front strip can generates an inverted field region trapping a fraction of βs thus generating negative signals at F_i

Simplified simulations

In a system of n electrodes the motion of a charge q₀ from point A to point B induces on the i-th electrode a charge

 $Qi = q_0(\psi_i(B) - \psi_i(A))$ with ψ_i weighting potential associated to electrode i

Weighting potential map associated to electrode F_i and electric field lines for the 75 μ m detector in presence of charge buildup at the front Si-SiO₂ interface.

Origin of inverted polarity pulses

<u>Particles hitting the left side of interstrip:</u> h (collected at F_i) and β (collected at B) both induce positive signals on F_i

<u>Particles hitting the rigth side of interstrip:</u> h (collected at F_j) induce negative signals on F_i β (collected at B) induce positive signals at F_i cancelling the one of h.

Build up of positive charge at the Si-SiO₂ interface in the front strip can generates an inverted field region trapping a fraction of β s thus generating negative signals at F_i

Comparison between simulation results and experiment (1000 µ detector, Ep=1.7 MeV → range in Si 35 µm, front interstrip)

Comparison between simulation results and experiment (1000 µ detector, Ep=1.7 MeV → range in Si 35 µm, back interstrip)

Conclusions

Efficiency for full energy detection in segmented Si detectors different than geometric one

Effective interstrip width depending on operating conditions

Experimental observations explained as a consequence of charge buildup at the Si-SiO₂ interface on both sides

Drawbacks of the the activation technique for σ_{Fus} measurements

Large beam energy distributions due to straggling/energy_loss effects and beam quality

 $E = (E_i + E_f)/2$

Drawbacks of the the activation technique for σ_{Fus} measurements

Large beam energy distributions due to straggling/energy_loss effects and beam quality

We measure

$$\sigma_{mean} = \frac{\int \sigma(E) D(E,t) dE}{\int D(E,t) dE}$$

To which energy E do we have to associate the measured σ_{mean} ?

a) Easy solution $E_{mean} = (E_i + E_f)/2$

b) Apparently better solution

$$E_{eff} = \frac{\int_{E_i}^{E_f} E \cdot \sigma(E) \cdot D(E) dE}{\int_{E_i}^{E_f} \sigma(E) \cdot D(E) dE}$$

Beautiful looking targets can be not really uniform....

size of grains up to 2 µm on Sn side

no structures on the rolled Nb substrate

⁶⁴Zn target ~ 0.4 μm (0.250 mg/cm2), exagonal grains 0.2 μm

A method to extract target thickness probability distributions

Thickness probability distribution w(t) for our Sn targets

Validation of the method used to extract the target thickness probability distributions

Comparison between experimental and calculated (using extracted w(t)) residual energy spectra of 21 MeV ⁶Li crossing 1 and 3 ¹²⁰Sn+⁹³Nb foils

To which energy do we have to associate the measured σ_{mean} ?

We define E_r such that $\sigma_{mean} = \sigma(E_r)$ with $\sigma(E)$ true excitation function.

Are E_{mean} or E_{eff} good approximations of E_r?

To which energy do we have to associate the measured σ_{mean} ?

Are E_{mean} or E_{eff} good approximations of E_r ?

Analytical answer possible only simplifying the problem. We assumed:
1) ⁹Li at 17 MeV entering a ¹²⁰Sn foil
2) We limit ourselves to the exponential region → σ(E)=σ₀exp(-α(E₀-E))
3) Constant beam energy FWHM within the target of 0 or 2 MeV
4) Energy decreasing linearly inside the target E=E₀-βt

In general none of the 2 considered approaches is correct !

A possible deconvolution procedure to extract $\sigma(E)$

For each target i we measure

$$\sigma_{mean,i} = \frac{\int \sigma(E) D_i(E,t) dE}{\int D_i(E,t) dE}$$

We look for a function gu(E,μ) (with μ parameters to be determined) which best reproduces the real σ(E). We calculate

$$gu_{mean,i} = \frac{\int gu(E,!)D_i(E,t)dE}{\int D_i(E,t)dE}$$

We find the best parameter set by minimizing

$$S = \left(\sum_{i} \left(\frac{\sigma_{mean,i} - gu_{mean,i}}{\beta_{i}} \right)^{2} \right)$$

Possible 'Wong like' guess function gu(E,µ) with parameters A,B,C

$$gu(E, \underline{!}) = \frac{A}{E} \ln \left(1 + exp(B(E - C)) \right)$$

Simulation study for ⁹Li+¹²⁰Sn

We assume

⁹Li beam of 28 MeV impinging on a stack of 5 ¹²⁰Sn targets 5 mg/cm² each followed by a ⁹³Nb catcher/degrader 1.5 mg/cm² thick. We consider 3 different cases:

1)Uniform Sn and Nb foils

2)Gaussian thickness distribution for ¹²⁰Sn (FWHM = 20%) and for ⁹³Nb (FWHM=15%)
3) 'polinomial' thickness distribution for ¹²⁰Sn and Gaussian for ⁹³Nb (FWHM=15%)

First target

⁹Li+¹²⁰Sn Simulation results

⁹Li+¹²⁰Sn Simulation results

⁹Li at 17 MeV average energy with different FWHM impinging on target

Considerations on some published fusion studies with RIBs (1)

⁶He+²⁰⁶Pb Y. Peniozhkevich et al PRL 96,162701, (2006)

6 ²⁰⁶Pb targets alternated with Al degraders.

6 MeV FWHM energy dispersion after the stack.

Authors estimate 2 orders of magnitude effect on data due to large energy dispersion but do not unfold data.

⁶He+²⁰⁶Pb R. Wolski et al. EPJ A47, 111, (2011)

8 ²⁰⁶Pb targets alternated with Ti degraders.

1.3 MeV FWHM energy dispersion after the stack.

Measured sigma factor 10 lower than Peniozhkevich one

Effective energy approach applied, authors state: 'if energy averaging procedure is disregarded σ overestimated by factor 3'.

Problems in the used E_{eff} approach.

Considerations on some published fusion studies with RIBs (2)

¹¹Be+²⁰⁹Bi C.Signorini et al. NPA 735, 329, (2004)

2 MeV incoming beam energy distribution.

3 targets irradiated.

From the given information only rough estimate of D(E) possible. Using this D(E) estimate, our unfolding procedure predicts a small overestimation of $\sigma(E)$ which is within the reported error bars for ¹¹Be.

Considerations on some published fusion studies with RIBs (3)

'The measured FWHM for each target was used to define the energy spread for each σ(E) point'. ⁶He+¹⁹⁷Au Y.Penionzhkevich et al. EPJ A31, 185, (2007)

Different stacks irradiated

Beam energy distribution ~ ± 2.5 MeV reported for the lowest energy points.

With reported beam energy spread, assuming the $\sigma(E)$ slope is the real one, the $\sigma(E)$ is expected to be overestimated by a factor 2-3 at the lowest energies.

 $\sigma_{mean} = rac{\int \sigma(E) D(E,t) dE}{\int D(E,t) dE}$

⁸He+¹⁹⁷Au A. Lemasson et al. PRLA31, 185, (2007)

 $\sigma(E)$ measured with an innovative technique.

Authors state:

'The target stacks consisted of 2 or 3 Au targets (6 mg/cm2) separated by Al foils (2 to 10 mg/cm2)'.

No information is explicitly given allowing an estimate of the discussed effects

^{4,6}He+⁶⁴Zn @ LLN: elastic and transfer + break-up

⁶He+⁶⁴Zn: conclusions.

•Presence of large alpha particle yield due to tranfer and B.U. events.

- •Transfer+B.U cross section dominates (~80%) total reaction .
 - From coincidence data: 2n transfer important.

A. Di Pietro et al.: Phys.Rev.C 69(2004)044613, V.Scuderi et al.: Phys.Rev. C 84, 064604 (2011)

^{9,10,11}Be +⁶⁴Zn Optical model parameters

Reaction	V(MeV)	r(fm)	a(fm)	V _i (MeV)	$r_i(fm)$	a _i (fm)	Vsi(MeV)	r _{si} (fm)	a _{si} (fm)
⁹ Be+ ⁶⁴ Zn	100	1.1	0.6	15.6	1.2	0.75			
¹⁰ Be+ ⁶⁴ Zn	90	1.2	0.6	77.9	1.2	0.6			
¹¹ Be+ ⁶⁴ Zn	90	1.2	0.6	77.9	1.2	0.6	0.856	1.2	3.5

 $\sigma_{\rm R} ({}^{9}{\rm Be} + {}^{64}{\rm Zn}) \approx 1090 \text{ mb}$ $\sigma_{\rm R} ({}^{10}{\rm Be} + {}^{64}{\rm Zn}) \approx 1260 \text{ mb}$ $\sigma_{\rm R} ({}^{11}{\rm Be} + {}^{64}{\rm Zn}) \approx 2730 \text{ mb}$

FUSION REACTIONS IN COLLISIONS INDUCED BY Li ON Sn TARGETS

To investigate the role played by the coupling to direct channels at energies above and below the barrier, we proposed to study:

Reactions	Q (1n transfer)	Q (2n transfer)]_
⁶ Li + ¹²⁰ Sn	0.51 MeV	-12.3 MeV	performed @LNS
⁷ Li + ¹¹⁹ Sn	1.858 MeV	2.36 MeV	
⁸ Li + ¹¹⁸ Sn	4.451 MeV	6.3 MeV	to be performed @TRIUM
⁹ Li+ ¹¹⁷ Sn	5.26 MeV	9.714 MeV	

✓ In these collisions it is possible to discriminate CF from ICF
 ✓ These reactions lead to the same compound nucleus
 and are characterized by different Q-values for neutron transfer

We wish to investigate:

Above the barrier the complete fusion suppression in a target mass range never studied before

Below the barrier the role played by the different n-transfer Q-values by comparing the fusion excitation functions for all the systems

MOTIVATION (1): NEUTRON TRANSFER AND FUSION BELOW THE COULOMB BARRIER

Fusion of weakly bound nuclei with heavy targets

● CN evaporates only neutrons → CF and ICF reactions can be easily separated via ER charge identification

> • Main Experimental findings: σ_{CF} suppression above the barrier of about 30% with respect to SBP or CC not including continuum. $\sigma_{TF} = \sigma_{CF} + \sigma_{ICF}$ not suppressed

Example: the ^{6,7}Li+^{120,119}Sn collision @ LNS

The 6,7Li+120,119Sn collision @ LNS

ER relative yield for CF well reproduced by statistical model.

Example: ⁶Li+¹²⁰Sn CASCADE DATA

Measured $\sigma_{FUS}(E)$ show the usual suppression above barrier with respect to SPB or CC

Fusion of WB nuclei with light/medium mass targets • CN evaporates charged particles →

CF and ICF reactions produce the same ER and cannot be easily separated

Experimental data refer to total fusion cross sections $\sigma_{TF} = \sigma_{CF} + \sigma_{ICF}$

Example: the ^{6,7}Li+⁶⁴Zn collision @ LNS

Which is the relative importance of CF, ICF and other mechanisms in the HR production ?

Enhancement with respect to SBP or CC calculations for CF Is there an important contribution of processes different than CF?

Fusion of WB nuclei with light/medium mass targets ● CN evaporates charged particles →

CF and ICF reactions produce the same ER and cannot be easily separated

Experimental data refer to total fusion cross sections $\sigma_{TF} = \sigma_{CF} + \sigma_{ICF}$

Example: the ^{6,7}Li+⁶⁴Zn collision @ LNS

Which is the relative importance of CF, ICF and other mechanisms in the HR production ?

Ratio of the HR excitation functions shows larger yield for ⁶Li below barrier already observed for other systems.

Which is the origin of such a relative enhancement ?

Systematics of fusion induced by halo and WB nuclei

Main ingredient: reduce $\sigma_{Fus}(E)$ to eliminate static effects

$$E \to x = \frac{E - V_B}{\hbar \omega}; \quad \sigma_F \to F(x) = \frac{2E}{\hbar \omega R_B^2} \sigma_F$$

Further transformation eliminates coupling to bound states effects

L.F. Canto et al.: NPA 821,51, (2009) ; P.R.S. Gomes et al.: PRC 79, 027606, (2009) J.Rangel et al.: Eur. Phys. Jour A 49, 57, (2013);

Cathode $4 \rightarrow$ (BeO/Ag = 1/35)

The activation technique we are using to measure $\sigma_{FUS}(E)$

Off line detection of atomic X rays following EC decay of the ER.

100% intrinsic detection efficiency for X rays + very low background
 ⇒ suitable for experiments with RIBs

 Z and A ER identification

Example: The ⁶Li+⁶⁴Zn collision @ LNS

