Status of the accelerators and news for the users

Danilo Rifuggiato

LNS User meeting December 15, 2015

LNS lay-out: accelerators and experimental halls

LNS lay-out: accelerators and experimental halls

The LNS accelerators

450 KV injector 2 sputtering sources

Normal conducting ECR source CAESAR

Superconducting ECR source SERSE

The LNS Superconducting Cyclotron

Bending limit	K=800
Focusing limit	Kfoc=200
Pole radius	90 cm
Yoke outer radius	190.3 cm
Yoke full height	286 cm
Min-Max field	2.2-4.8 T
Sectors	3
RF range	15-48 MHz

 $(T/A)_{max} = K_{bending} (Q/A)^2 \sim 25 AMeV Au36+$ $(T/A)_{max} = K_{focusing}$ (Q/A) 100 AMeV fully stripped

Versatility (performance)

Reliability (protontherapy)

High intensity (radioactive beams)

Beams developed at the Superconducting Cyclotron

🔺 ⁴He 80 AMeV

¹¹²Sn 43.5 AMeV

In red beams with intensity 10¹² pps

AX	E (AMeV)
H_2^+	62,80
$\tilde{\mathrm{H}_{3}^{+}}$	30,35,45
$^{2}\mathbf{D}^{+}$	35.62.80
⁴ He	25.62.80
Не-Н	10,21
⁹ Be	45
¹¹ B	55
^{12}C	23,62,80
¹³ C	45.55
14N	62,80
¹⁶ O	21,25,55,62,80
¹⁸ O	15.55
¹⁹ F	35,40,50
²⁰ Ne	20,40,45,62
²⁴ Mg	50
²⁷ Al	40
³⁶ Ar	16,38
⁴⁰ Ar	15,20,40
⁴⁰ Ca	10,25,40,45
^{42,48} Ca	10,45
⁵⁸ Ni	16,23,25,30,35,40,45
^{62,64} Ni	25,35
^{68,70} Zn	40
⁷⁴ Ge	40
^{78,86} Kr	10
⁸⁴ Kr	10,15,20,25
⁹³ Nb	15,17,23,30,38
¹⁰⁷ Ag	40
¹¹² Sn	15.5,35,43.5
¹¹⁶ Sn	23,30,38
¹²⁴ Sn	15,25,30,35
¹²⁹ Xe	20,21,23,35
¹⁹⁷ Au	10,15,20,21,23
208Ph	10

Increasing the Cyclotron beam intensity

¹³C⁴⁺ @ 45 AMeV Pextr = 150 watt I=1020 enA= 1.5x10¹² pps

Septum: directly cooled New septum material: W vs. Ta Bigger thickness: 0.3 vs. 0.15 mm ⇒extraction efficiency 63% vs. 50%

The
matchingsource-cyclotron
needsimproved

Beam transport along the injection line is now being considered, following the MSU, JYFL, KVI methods

Superconducting Cyclotron: highlights

RF

Upgrade of the 100 kW amplifiers: replacement of an obsolete tetrode with a solid state system

ECR sources SERSE : Autonomous cryogenic system based on 2 cryocoolers – installation complete – under test CAESAR: new controls system and new oven for metallic low energy beams

Helium liquefier September 2013 – September 2014 Revamping of the helium liquefier to recover the high reliability level of the past 20 years. Cyclotron not operating 1.5 y. Restart: October 2014

Turbine fixed, PLC replaced, software updated, New valves, pressure devices, filters, gaskets, actuators installed

On June 27 another stop occurred due to a failure in the helium compressor, where a heat exchanger was corroded by water. The new exchanger was installed in September, but only 1 month of beam time was lost

Superconducting Cyclotron reliability

A weak point: the Liquid Nitrogen shields

After the warm-up operations (2 since the first cooldown in 1992) LN2 losses have been detected in the LN2 shields of the cryostat. One of the three shields – named virola interna – has already been closed, but some smaller losses have already been detected in the other big shield – named virola esterna – which cause some problems to the cryostat vacuum.

LN2 shields cannot be fixed nor replaced.

Activity at the Cyclotron October 2014 – December 2015

Just after the mentioned failure in May 2013, the Scientific Committee assigned beam time for 1 year. Therefore after the revamping of the Helium liquefier (1.5 year later), around 15 months had to be recovered.

INTERDISCIPLINARY PHYSICS			
MAPRAD	0°		
RADIOSTEM	0°		
HADMAC	0°		
MIMOBRAGG	0°		
IONMAPS	0°		
REDOLIB	0°		
PIRAMIDE	0°		
WP1-BIOQUART	0°		
IRSIDIA	0°		
DIAPIX	0°		
MITRA	0°		
ELIMED	40°		
PRIMA	Catana		
DNA-Bragg	Catana		
DOPET	Catana		
ARDENT	Catana		
PREDATE	Catana		
TERASPARC	Ciclope		

NUCLEAR PHYSICS

CLIR SIKO PIGMY RAINBOW NI Test NUMEN O16-MAGNEX DRIP-LINES AB-INITIO ISOFAZIA FAZIASYM FAZIA test Chimera Chimera Chimera Magnex Magnex Magnex Magnex Ciclope Ciclope Ciclope

Upgrade of the Tandem – project LNS Nuclear Astrophysics

Tube n. 1 damaged : high residual pressure in the Low Energy section due to the vacuum losses (SF6 inside) Ordered to VIVIRAD, France, delivered to LNS in May 2014, assembled in the Tandem in July 2014

Replacement from the Low Energy side by means of a dedicated system to minimize stresses

Alternative to the belt: Pelletron by NEC, USA Ordered in July 2013 Delivered on January 6 2015 Installed on January 19 2015 in 3 weeks

12.3 MV reached at the H.V. Terminal

Activity at the Tandem 2014 – 2015

After the completion of the Tandem upgrade – Tube n. 1 and Pelletron - the following experiments have been performed

INTERDISCIPLINARY		
ELIMED FF-PIXE	40°-60° 60°	
LASERDRIVEN	60°	
PIRAMIDE	60°	

NUCLEAR PHYSICS			
LIPMAGNEX	Magnex		
COINFUS	40°		
ASFIN	60°		
E0	60°		
NIA	60°		
LIFUS	60°		
TEST CHIMERA	Chimera		
TEST FAZIA	Ciclope		

A test for production and acceleration of Mg has been made: 500 enA produced in the source (MgH) and 50 enA q=8, E=80 MeV accelerated and analysed

Beam availability in 2016

Superconducting Cyclotron (including FRIBS@LNS)

Beam Time Units (1 BTU = 8 h) on target per year (9 months): 400 BTU (=3200 h)

Meeting of the PAC on November 16,17

Protontherapy 5 sessions	-85 BTU
• ELIMED	-45 BTU
Experiments	270 BTU + 15 [*]
 Backlog 	-42 BTU
Total assigned	228 +15*

* overnight during Catana if p 62 MeV in the Catana hall

Total requested390

Beam availability in 2016

Tandem			
Beam Time Units (1 BTU	J = 8 h) o	n target per ye 360 BT	ear (9 months): U (=2880 h)
Beam time distribution:			
• ELIMED			-21 BTU
Backlog			-12 BTU
Total availab	le		327
Total request	ed and	assigned	128