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• Quantum Metrology and Quantum Imaging
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• Quantum Metrology and Quantum Imaging
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Quantum metrology and sensing will represent  
a fundamental tool for enhancing measurement  
performance in the near future: from interferometry  
to sensing at sub-shot noise level.



Future: from gravitational waves  
in interferometers to quantum gravity noise  
in quantum interferometers
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Future: from gravitational waves  
in interferometers to quantum gravity noise  
in quantum interferometers

UNICAM

Idea (2004): Noise reduction in  
gravitational wave  using feedback
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• Quantum Opto-Mechanics



Advanced	GW	detectors	operate	 
at	the	quantum	noise	limit	imposed	 
by	Heisenberg	uncertainty:		 
injec&on	of	squeezed	vacuum	light	 
enables	one	to	go	beyond	the	standard	  
quantum	limit	(LIGO	collabora&on, 
Nat.	Photon.	July	2013)



Nano-opto-mechanical systems are and will be a unique  
platform for testing fundamental physics, especially  
when quantum mechanics and gravity meet
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• Quantum Communication (in space) UNIPD

Steps forward in Quantum Communication  
from orbiting sources (@ Matera Laser Ranging  
Observatory - MLRO, Italian Space Agency)

• Space Quantum Communications: exchange of photonic  
quantum states with transmitter or receiver in Space.  
Correlations between terminals.  

• Quantum Teleportation, Quantum Key distribution 

• Tests on the effects of Gravitation in  
Quantum Mechanical measurements. 

• Polarization and temporal modes. Integrated photonic quantum  
circuits in the transmitter in orbit will simplify the payloads  
and allows for more complex protocols as in teleportation.





• Photonics UNIROMA1

Integrated  
quantum photonics

Preparation

Detection

- Single photon sources 
- Manipulation 
- Single photon detectors 
ON THE SAME CHIP



Integrated quantum optics

Orbital Angular Momentum 
 of LightMulti degrees of freedom of light 

for quantum information processing
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Lattice Gauge Theories

Quantum Technologies
Role of European and Italian 
collaborations
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• Quantum Simulations
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per plaquette (20). The Hamiltonian describing
the system is

H ¼
X
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where c†j;aðcj;aÞ are fermionic creation (annihila-
tion) operators on the site ( j,a) in the real ( j ) and
synthetic (a = 1,2,3) dimensions, andnj;a ¼ c†j;acj;a.
The first term describes the dynamics along x̂,
where t can be tuned by changing the intensity
of the optical lattice beams. The dynamics along
m̂ is encoded in the second term:Wa can be con-

trolled by changing the power of the Raman
beams, whereasϕ can be tuned by changing their
angle (20). In Eq. 1, mj describes a weak trapping
potential along x̂, whereas xa accounts for a state-
dependent light shift, providing an energy offset
along m̂. h.c. stands for Hermitian conjugate. In
our experiment, we produced large synthetic
magnetic fields corresponding to ϕ ≃ 0:37p per
plaquette. For fermionic particles, we use alkaline-
earth–like 173Yb atoms, initially prepared in a
degenerate Fermi gas. The sites of the synthetic
dimension (Fig. 1B) are encoded in a subset of
spin states {m} out of the I = 5/2 nuclear spin
manifold, thus providing fermionic “ladders”with
up to six “legs.” These atoms show SU(N)-invariant
interactions [SU(N), special unitary group of degree
N] (21), inhibiting the redistribution of the atoms
among the different synthetic sites by collisional

processes (22, 23). The effect of these interactions—
which is not fundamental for explaining the ob-
servations reported in this manuscript—has been
taken into account in the theoretical model as a
renormalization of the trap frequency (20). This is
possible because the maximum filling fraction is
h ≃ 0:8 atoms per site of the real-space lattice:
For larger filling fractions commensurate with the
lattice, possible insulating phases can be stabilized.
The key advantage offered by the implemen-

tation in a lattice that combines real and syn-
thetic spaces is the possibility to work with a
finite-sized system with sharp and addressable
edges. Specifically, we focus on elementary con-
figurations made up of fermionic ladders with a
small number of legs connected by a tunnel cou-
pling between them. A leg is constituted by a 1D
chain of atoms trapped in the sites of the real
lattice in a specific spin state, whereas the ladder
“rungs” are provided by the synthetic tunneling
(Fig. 1A). The number of legs can be set by con-
trolling the light shifts xa in such a way as to
choose the number of spin states that are cou-
pled by the Raman lasers (20).
We first consider the case of a two-leg ladder

constituted by the nuclear spin states m = –5/2
andm = –1/2. A quantumdegenerate 173Yb Fermi
gas with 1.6 × 104 atoms and an initial temper-
ature T≃ 0:2TF (where TF is the Fermi temper-
ature) is first spin-polarized in m = –5/2. By
slowly turning on the intensity of the optical
lattice along x̂ (and of an additional strong lat-
tice along ŷand ẑ to suppress the dynamics along
the other two real directions), we prepare a sys-
tem of ladders in which all atoms occupy the
m = –5/2 leg with less than one atom per site
(i.e., in a conductive metallic state). Then, by
controlling the intensity and frequency of the
Raman beams (20), we slowly activate the tunnel
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Fig. 1. A synthetic
gauge field in a
synthetic dimension.
(A) We confine the
motion of fermionic
ultracold atoms in a
hybrid lattice, generated
by an optical lattice
along a real direction x̂
with tunneling t, and by
laser-induced hopping
between spin states
along a synthetic direc-
tion m̂. By inducing a
complex tunneling
W1;2eiϕj along m̂, the atom wave function acquires a phase ϕ per plaquette, mimicking the effect of a
transverse magnetic field B on effectively charged particles. (B) Scheme of the 173Yb nuclear spin
states and Raman transitions used in the experiment.

Fig. 2. Chiral dynamics in
two-leg ladders. (A) (Top)
False-color time-of-flight
images of the atoms in the
m = –5/2 and m = –1/2 legs
(averages of ~30 realizations).
(Middle) Integrated lattice
momentum distribution n(k).
(Bottom) h(k) = n(k) – n(–k)
[numerical values within the
plots are the net momentum
unbalance J determined from
h(k)]. Experimental parame-
ters: W1 = 2p × 489 Hz, t =
2p × 134 Hz, W1/t = 3.65, and
ϕ ¼ 0:37p. (B) Time-of-flight
images and h(k) of the m =
–1/2 leg for opposite directions
of the effective magnetic field.
Experimental parameters:
W1 = 2p × 394 Hz, t = 2p ×
87 Hz, W1/t = 4.53, and ϕ ¼ T0:37p. (C) Sketch of the two-leg ladder configuration realized for this experiment. The arrows are a pictorial representation of the
chiral currents. (D) Circles show experimental values of jJj for the m = –1/2 leg as a function of W1/t (averages of data sets taken for ϕ ¼ T0:37p). The error
bars are obtained with a bootstrapping method applied on ~30 different measurements. The shaded area depicts the result of a numerical simulation that
includes thermal fluctuations (20).
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LENS: synthetic gauge field  
in a synthetic dimension
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! Phase Diagram
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UNIBO-UNINA:  
phase diagram QED (1+1)

UNIV. ULM:  
real time dynamics QED (1+1)  

string breaking and pair creation


