NEW DIRECTIONS: Inflation and Dark energy...what next??

NICOLA BARTOLO, Dip. di Fisica e Astronomia ``G.Galilei'', Univ. di Padova INFN, sezione di Padova

Conveners: Nicola BARTOLO, Paolo de BERNARDIS, Alessandro MELCHIORRI

Thanks to the contributions of: C. Baccigaluppi, S. Borgani, E. Branchini, F. Finelli, M. Liguori, S. Matarrese, L. Moscardini, P. Natoli, M. Pietroni, L. Stanco

Inflation: CMB and new pathways

- A number of inflationary parameters have been constrained with great accuracy (*Planck*):
 - amplitude of density (scalar) perturbations A_s
 - spectral index ${\rm n}_{\rm s}\,$ (and its running)
 - amplitude of gravity waves (tensor-to-scalar ratio r) \leftarrow \rightarrow energy scale of inflation
 - primordial non-Gaussianity: a laboratory for cosmological scattering experiments
 - $f_{NL}(g_{NL})$: amplitude of bi(tri)spectrum 3(4)point function -- of primordial perturbations
- Despite the simplicity of the inflationary mechanism, the precise model has still to be identified

There is a huge potential improvement

- CMB E and B mode polarization
- Primordial NG from: Large-Scale Structure surveys (scale-dependent halo bias+ bispectrum) CMB spectral distortion; high-redshift 21 cm fluctuations
- Recently developed pipelines to constrain CMB trispectrum
- Synergies between CMB and interferometers

Primordial non-Gaussianity

		$f_{ m NL}^{ m loc} \lesssim 1$	$f_{\rm NL}^{\rm loc}\gtrsim 1$
$\left[\right]$	$f_{\rm NL}^{\rm eq,orth} \lesssim 1$	Single-field slow-roll	Multi-field
	$f_{\rm NL}^{\rm eq,orth}\gtrsim 1$	Single-field non-slow-roll	Multi-field

- Primordial non-Gaussianity (NG) is a crucial observable to test the fundamental physics of inflation. It probes interaction terms of quantum fields at extreme energies. Of paramount importance to distinguish inflation models.
- Best constraints to date come from *Planck* observations of CMB anisotropies
- > Core+ can improve by a factor of 2 by fully exploiting polarization information

 $f_{NL}(local) = 2.5 \pm 5.7 (68\% \text{ CL})$ $f_{NL}(equilateral) = -16 \pm 70$ $g_{NL} = -(9.0 \pm 7.7) \times 10^4$

A *crucial* prediction of Standard Single Field Inflation: $f_{NL} \sim 0.01 \sim O(\epsilon, \eta)$

Acquaviva, Bartolo, Riotto, Matarrese et al 2002; Maldacena 2002

> e.g. Scale-dependent halo bias and large radio surveys

Shape	$\mathrm{EMU}_C^{100\mu Jy}$	$\mathrm{EMU}_O^{100\mu Jy}$	$\mathrm{EMU}_C^{50\mu Jy}$	$\mathrm{EMU}_O^{50\mu Jy}$	$SKA_C^{5\mu Jy}$	$SKA_O^{5\mu Jy}$	SKA_C^{100nJy}	SKA_O^{100nJy}	Futuristic	CMB
$\sigma(f_{ m NL})$ local	11.94	5.54	9.26	4.37	1.62	1.06	0.67	0.51	0.21	5.7
$\sigma(f_{\rm NL})$ equilateral	221.14	79.84	179.03	62.58	22.24	9.09	6.18	2.83	0.42	70
$\sigma(f_{\rm NL})$ orthogonal	102.97	39.04	82.25	30.69	15.30	7.40	6.71	3.35	0,54	33
$\sigma(f_{ m NL})$ folded	151.48	56.45	121.50	44.35	20.29	9.25	8.15	4.14	0.96	65
$\sigma(c_{L=1})$	1916.29	721.15	1519.8	558.35	200.62	78.32	41.81	17.54	2.14	103
$\sigma(c_{L=2})$	10874.9	4113.82	8436.7	2952.5	1098.93	393.60	193.48	76.55	9.22	26

Raccanelli et al. 15

1σ CMB Planck 2015 Standard models of inflation predict f_{NL} ~0.01

FUDAMENTAL TEST OF STANDARD MODELS OF INFLATION.

 \succ Euclid will be able to achieve a sensitivity down to $f_{NL}=2$.

N.B.: Methods, statistical estimators developed within CMB *Planck* analysis for primordial NG can be applied to test primordial NG from Large-Scale Structure surveys

New future probes: CMB spectral distortions & 21 cm

Cross-correlation CMB T anisotropies and CMB μ -spectral distortions: a cosmic-variance limited experiment can reach $f_{NL}(local)^{0.001}$!!!! (for PRISM ~23) g_{NL}^{4} !!!!! (for CMBPol ~5×10⁵)

Pajer and Zaldarriaga '12 Ganc & Komatsu 2012 Bartolo, Liguori, Shiraishi 2015

High-z 21cm fluctuations: a cosmic-variance limited experiment can reach $f_{NL}(local)^{0.03}$ $f_{NL}(equil.)^{0.04}$!!!!!

Munoz, Ali-Haimond, Kamionkowski '15 A. Cooray, 06 Pillepich, Porciani, Matarrese 07

New future probes: CMB spectral distortions & 21 cm

Deviations from a non-Bunch Davies vacuum state during inflation *could* be already detected by *Planck via CMB* μ -spectral distortions; for sure they are at the reach of a PIXIE like experiment

Running of the spectral index

With the CMB spectral distortions an exp. like PRISM can measure the running more precisely Wthan *Planck* by a factor of 3

With 21 cm the running can be measured more precisely than *Planck* by a factor of 10

Synergies between CMB and interferometers

Meerburg et al. 1502.00302 (see also, e.g., Cabass et al 1511.05146; Lasky et al. 1511.05995 Blair et al. 1602.02872)

Cabass et al 1511.05146

LARGE-SCALE-STRUCTURE SURVEYS AND DARK ENERGY

Euclid - INFN

- > Da inizio 2015 partecipazione dell'INFN alla costruzione del satellite EUCLID
- Responsabilità dei gruppi BO-Pd sull'integrazione hardware/software dell'elettronica a caldo dello strumento che opera nell'infrarosso (NISP)
 (per la parte teorica molti altri nodi INFN gia` coinvolti)
- Partecipazione allo sviluppo del software di bordo.
- Attività future / Opportunità:
 - Partecipazione alla presa dati (NISP Operational Team)
 - Contributo gestione dati del Science Ground Segment
 - Attività di ricostruzione e simulazione osservabili, in particolare Weak Lensing e Galaxy Clustering (natura Dark Energy e Dark Matter)
 - Sviluppo di algoritmi di analisi

NB: L'entità dell'impegno futuro è condizionato alla disponibilità di (auspicabili) nuove forze

- Interessante esempio di collaborazione tra enti di ricerca (comunita` scientifiche) con know-how diversificati. Gia` molte le competenze in questo ambito di ricerca all'interno di IS INFN astroparticellari, pronte a far supporto alla parte sperimentale per analisi dati
- > Altro esempio: supporto INFN a analisi dati di non-Gaussianity per terza release di *Planck*
- Altro campo di interesse puo` essere HPC per simulazioni cosmo. di ACDM (e oltre) o per sviluppare pipelines di applicazione di estimatori statistici in diff. tipi di analisi dati

The Square Kilometer Array

https://www.skatelescope.org/ New re-baselining (as of March 2015)

SKA1-Mid
→ Freq. range: 300 MHz - 15 GHz
→ 130 15m dishes in South Africa

SKA1-Low

 Freq. range: 50-350 MHz
 ~ 130.000 low-frequency dipoles in Australia

2018-2023: Construction of SKA1; 2020+ SKA1 Early Science

SKA – Surveys for Cosmology:

- 1. HI Intensity Mapping [BAO, super-horizon, etc.] All-sky; low-resolution >30'; 0<z<3</p>
- 2. HI Threshold: galaxy redshift survey [BAO, RSD]
 SKA1: 5 10⁶ gals @ z<0.5
 SKA2: ~10⁹ gals @ z<2
- 3. Continuum [weak lensing, angular clustering, ISW]:
 - → <u>All-Sky Survey</u> (~ 1-2" res.)
 - → Weak Lensing Survey (0.5" res.)

DM, DE, testing GR and initial conditions

Euclid + SKA: huge synergies

→ Scientific: smaller volume higher res. vs large volume low-res, complementary constraints, multi-tracers, etc.

→ Programmatics: e.g. simulations, likelihood definitions and coding, etc.

SN-Ia + CMB + surveys: a ``single experiment"

The combination is much more than the sum of the parts

- Context and Relevance
 - CMB lensing relevant for Dark Energy, Neutrino Mass, De-Lensing for B-mode experiments
 - CMB lensing takes power at high redshifts compared to Euclid (z<=2), peaking between 1 and 3 with a long tail extending to the reionization epoch. It is and will be used in combination/crosscorrelation with LSS data in order to constrain the DE/MG at the corresponding epochs. (Acquaviva e Baccigalupi 06).
 - Context: CMBXC WG in Euclid, exploitation of Planck, operating CMB polarization experiments from the ground (PolarBear2, Spider, ...), future ones from the ground, balloon, space (S4, LSPE, CORE, ...)
- **Tasks**
 - Observe and Simulate Cross-Correlation between CMB lensing and LSS fields
 - CMB rendering through study and rmoval of diffuse polarized foregrounds in polarization
- **Status**

 - CMB-N-body lensing implemented (Calabrese et al. 2015) for simulating CMB-LSS XC
 - Diffuse polarized foreground studies using existing satellite data (Krachmalnicoff et al. 2016), RADIOFOREGROUND COMPET-5 H2020 Grant starting in 2016
- Issues: demanding simulations and computing resources, need for grants, coordinating within large collaborations, implementing multi-platform data analysis software, ...

CMB *CMB S CMB S CMB*

Evidence for bias evolution in tomographic analysis CMB lensing (Planck) and Herschel LSS Cross-Correlation, along with correlation excess (Bianchini et al. 2016, ApJ submitted)

Regions of High Diffuse Polarized Foreground Contamination vs opearting and forthcoming CMB <u>experiments (Krachmalnicoff et al., A&A 2016)</u>

Inflation with violation of slow-roll and future galaxy surveys

 Future galaxy surveys, in combination with Planck plus future CMB measurments, has also the capability to probe selected violations of slow-roll which could be the origin of the puzzles at low and intermediate multipoles in the temperature power spectrum (a low amplitude at I < 40 and a feature at I = 20) seen by Planck.

- Because of cosmic variance, these anomalies in the CMB temperature power spectrum are not statistically significant but ...
- ...you can look elsewhere:

CMB polarization (Planck, ACTpol, CLASS, LSPE, ...) Galaxy surveys(DESI, EUCLID, SPHEREx, ...) Several inflationary models can produce features in the primordial power spectrum which fit these anomalies, few examples:

Planck 2015 constraints on inflation

Results consistent with *Planck* 2013;

 $r_{0.002}$ <0.11 @95% CL consistent with Bicep2/Keck & *Planck* joint Increased precision V(ϕ) ~ ϕ^2 disfavored wr.t. Starobinski model R+R^2

Over the next 10 years or so study of galaxy clustering will be a major focus for Cosmology that will involve a significant fraction of the community worldwide and will trigger major theoretical and technical advances towards a better understanding of the Dark Energy, Dark Matter and Non-standard gravity issues, inevitably involving theoretical and particle Physics.

Euclid

- Visible imaging (1 band)
- Infrared imaging (Y,J,H)
- Infrared slitless spectroscopy
- Approved 2011; Launch 2020
- 15,000 deg² survey
- Images for 2x10⁹ galaxies
- Spectra for ~5 x 10⁷ galaxies (0.9<z<1.8)

Objectives:

- Build a map of dark and luminous matter over 1/3 of the sky and to z~2
- Unveil the nature of dark matter
- Trace the origin of cosmic acceleration
- Use multiple probes → max control over systematic errors

	Modified Gravity	Dark Matter	Initial Conditions	Dark Energy			
Parameter	γ	m , /eV	f _{NL}	w _p	Wa	FoM	
Euclid primary (WL+GC)	0.010	0.027	5.5	0.015	0.150	430	
Euclid All	uclid All 0.009 0.02		2.0	0.013	0.048	1540	
Euclid+Planck	0.007	0.019	2.0	0.007	0.035	4020	
Current (2009)	0.200	0.580	100	0.100	1.500	~10	
Improvement Factor	30	30	50	>10	>40	>400	

Ref: Euclid RB arXiv:1110.3193

Assume systematic errors are under control

