How much can we improve after Planck ? (on cosmological parameters) [Using CMB]

Constraints on ΛCDM

Errors are improved by a factor 5 (7 in some cases!) respect to Planck 2015.

Constraints at 68% c.l.

Constraints on Neutrino Mass

Constraints on Neutrino Masses + Neff

Constraints on Neutrino Masses + Neff

Constraints on Helium abundance (and neutron lifetime)

Dataset	$Y_{ m p}^{ m BBN}$	$\tau_n [s]$
Planck TT, TE, EE	0.252 ± 0.014	907 ± 69
COrE	0.2467 ± 0.0025	880 ± 12

Constraints at 68% c.l.

Conclusions

- Planck provided the best CMB measurements to date but...
- ...there is still space for a significant improvement !
- A cosmic variance limited experiment as CORE++ could improve current constraints by a factor 5-7.
- Significant impact on neutrino mass, number, BBN.
- Foregrounds could be an issue but they could be removed with sufficient coverage on frequency (this could be a strong issue especially for ground based experiments as StageIV).