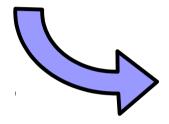


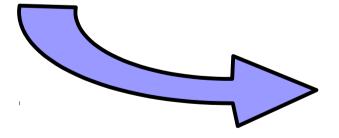
Outline through keywords

• Supersymmetry breaking at strong coupling



non-SUSY vacua of cascading gauge theories

• Holography without UV fixed point



Ward identities and the goldstino

Conclusion (flash forward)

- General derivation of Ward identities with nontrivial sources ("Noether procedure at strong coupling")
- Towards systematic holographic renormalization for cascading gauge theories (very little known in QFT)
- Insensitivity to the IR
- Vacua with **spontaneous SUSY** \Leftrightarrow D-brane at the tip of the conifold
- Successful, **necessary** check for the existence of **SUSY** vacua in the **Klebanov-Strassler** cascading gauge theory

(super)symmetry breaking at strong coupling

Klebanov Witten hep-th/9905104

- Dynamical SUSY breaking \leftrightarrow hierarchy problem
- Chiral symmetry in QCD
- High T_c superconductors and strange metals
- Higher spin theories and String Theory

• ...

At strong coupling, fields either responsible or resulting from symmetry breaking are typically composite

In general the spontaneous breaking can be studied purely from the operator point of view

Three key features of holography

• A strongly coupled QFT dual to a weakly coupled gravity model

• A tool to compute correlation functions of the QFT

• Global symmetries in the QFT correspond to local symmetries in the gravity model

U(1) breaking (holographic toy model)

Prototypical example of the occurrence of **Goldstone** bosons in holography: 5D vector with an axion-like scalar.

$$S = \int d^5x \sqrt{G} \left[\frac{1}{4} F^{MN} F_{MN} + \frac{1}{2} m(z)^2 \left(\partial_M \alpha - A_M \right) \left(\partial^M \alpha - A^M \right) \right]$$

$$\Phi = \frac{1}{\sqrt{2}} \, m \, e^{i\alpha}$$

Higgs mechanism for the minimally-coupled Φ

Bianchi, Freedman, Skenderis hep-th/0105276 Argurio, Musso, Redigolo hep-th/1411.2658

$$A_M \to A_M + \partial_M \lambda$$
 $\alpha \to \alpha + \lambda$ Gauge transformation

 $(\Delta_{\mathcal{O}_m} = 3) \quad m(z) = m_0 z + \tilde{m}_2 z^3 + \dots$

Bulk: a non-trivial profile for m(z) breaks *spontaneously* the gauge symmetry

EXPLICIT SPONTANEOUS

Boundary: the breaking of the global U(1) depends on the details of the profile of m(z)

Spontaneous vs Explicit: expectations

The transverse and longitudinal parts of A_{μ} are **dual** respectively to the transverse and longitudinal parts of the boundary current J_{μ}

$$\langle J_{\mu}(k)J_{\nu}(-k)\rangle = -(k^2\delta_{\mu\nu} - k_{\mu}k_{\nu})C(k^2) - m_0^2 \frac{k_{\mu}k_{\nu}}{k^2}F(k^2)$$

The longitudinal part of A_{μ} mixes with α which is **dual** to the imaginary part of the operator breaking the symmetry, Im \mathcal{O}_m

$$\int d^4x \,\Phi_0 \,\mathcal{O}_m + c.c. = \sqrt{2} \int d^4x \,(m_0 \,\mathrm{Re}\mathcal{O}_m - m_0 \,\alpha_0 \,\mathrm{Im}\mathcal{O}_m)$$

- SPONTANEOUS: $F(k^2) = 0$ (purely transverse), massless pole in $C(k^2)$, massless pole in the correlator $\langle J_{\mu}(k) \operatorname{Im} \mathcal{O}_m(-k) \rangle = \sqrt{2} \, \tilde{m}_2 \, (k_{\mu}/k^2)$
- EXPLICT: $F(k^2) \neq 0$, no massless pole in $C(k^2)$, operator identity

$$\partial_{\mu}J^{\mu}=m_0\operatorname{Im}\mathcal{O}_m$$

Spontaneous vs Explicit: outcome

 $t \to {\rm transverse}$

 $l \to \text{longitudinal}$

SPONTANEOUS

$$S_{\text{ren}} = -\int d^4k \left[a_{0\mu}^t \tilde{a}_{2\mu}^t + \tilde{m}_2 \alpha_0 (\tilde{\alpha}_2 + a_0^l) + \text{local} \right]$$

$$\langle J_{\mu}(k) \operatorname{Im} \mathcal{O}_m(-k) \rangle = \sqrt{2} \, \tilde{m}_2 \, (k_{\mu}/k^2)$$

The massless pole in $\langle J_{\mu}J_{\nu}\rangle$ arises from $a_{0\mu}^t\tilde{a}_{2\mu}^t$ because of bulk dynamics

EXPLICIT

$$S_{\text{ren}} = -\int d^4k \left[a_{0\mu}^t \tilde{a}_{2\mu}^t + m_0 \left(\alpha_0 - a_0^l \right) \tilde{\alpha}_2 + \text{local} \right]$$
$$\partial_{\mu} J^{\mu} = m_0 \operatorname{Im} \mathcal{O}_m$$

Lessons from the toy model

- Qualitative difference when the breaking is explicit or spontaneous
- When the breaking is **spontaneous** we have a **Goldstone** in $\langle J_{\mu}J_{\nu}\rangle$ (which is transverse) and in $\langle \text{Im}\mathcal{O}_m\text{Im}\mathcal{O}_m\rangle$ arising from bulk dynamics
- The **Goldstone** appears also in

$$\langle J_{\mu}(k) \operatorname{Im} \mathcal{O}_{m}(-k) \rangle = \sqrt{2} \, \tilde{m}_{2} \, (k_{\mu}/k^{2})$$

because the VEV of $\text{Re}\mathcal{O}_m \propto \tilde{m}_2$ produces a contact term whose holographic manifestation depends **only** on the renormalization

• Same kind of reasoning (modulo technicalities) can be adopted for other symmetries, e.g. supersymmetry, R-symmetry, ...

Argurio, Musso, Redigolo hep-th/1411.2658

Developments of the toy model

• Lorentz and the "zoology" of Goldstones

Argurio, Marzolla, Mezzalira, Naegels hep-th/1507.00211 Amado, Arean, Alba, Landsteiner, Melgar, Landea hep-th/1302.5641

 Hierarchical explicit/spontaneous breaking and pseudo-Goldstones

Babington, Erdmenger, Evans, Guralnik, Kirsch hep-th/0306018

• A toy-model for *translation breaking*?

General Gauge Mediation

Meade, Seiberg, Shih hep-th/0801.3278

Definition: in the limit that the MSSM gauge couplings $\alpha_i \to 0$, the theory decouples into the MSSM and a separate hidden sector that breaks SUSY.

- Both messenger and direct mediation models
- Phenomenological appeal e.g. flavor blindness
- Allowing for strongly coupled hidden sectors

Given any model for a hidden sector, the current-current correlation functions of the (later weakly gauged) global symmetry parameterize the effects of the hidden sector on the MSSM

in holography:

Argurio, Bertolini, Di Pietro, Porri, Redigolo hep-th/1205.4709,1208.3615 Argurio, Musso, Redigolo hep-th/1411.2658

Goldstino at strong coupling

- Goldstone theorem ensures the presence of a massless mode in the spectrum
- Spontaneously broken SUSY leads to a massless fermion mode, the Goldstino
- The **Goldstino** appears (e.g.) in the 2-point correlator of the supercurrent. Its residue is proportional to the **SUSY** order parameter

$$\langle \partial^{\mu} S_{\mu\alpha} (\sigma^{\nu} \bar{S}_{\nu})_{\beta} \rangle = 2 \, \epsilon_{\alpha\beta} \langle T \rangle$$

• GOAL: Explicitly check the above framework in holography

Two questions

- Is the solution gravitationally (meta)stable?
- Is the supergravity mode dual to the Goldstino present?

- A positive answer to the first guarantees that the solution is describing an actual QFT vacuum
- The second ensures that in such a vacuum **SUSY** is broken spontaneously

One answer

In **QFT** the two questions can be answered independently!

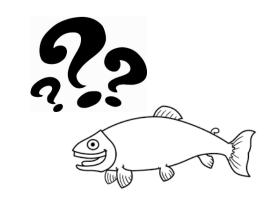
• Consider the **supercurrent** 2-pt function

$$\langle S_{\mu\alpha}\bar{S}_{\nu\dot{\beta}}\rangle$$

• The information regarding the **Goldstino** pole is encoded in the term implied (upon integration) by the supersymmetry Ward identity

$$\langle \partial^{\mu} S_{\mu\alpha}(x) \bar{S}_{\nu\dot{\beta}}(0) \rangle = -2 \, \sigma^{\mu}_{\alpha\dot{\beta}} \langle T_{\mu\nu} \rangle \delta^{4}(x)$$

- Ward Identities depend on UV data only
- Vacuum stability is an IR property



Need to break conformal symmetry

• Lorentz invariant theory and vacuum

$$T_{\mu\nu} \propto \eta_{\mu\nu}$$

• Spontaneous SUSY breaking only allowed when conformal symmetry is broken explicitly.

• Chase for **SUSY**-preserving terms which break conformality **explicitly**

Klebanov-Strassler theory

Klebanov, Strassler hep-th/0007191

Gauge Group
$$SU(N+M)\times SU(N)$$
 Global Symmetry
$$SU(2)\times SU(2)\times Z_2\times Z_2$$
 Bifundamental (Chiral) Matter
$$A_i\,,B_k\,(i,k=1,2)$$
 Superpotential
$$W=\lambda\,\operatorname{tr}(A_iB_kA_jB_l)\epsilon^{ij}\epsilon^{kl}$$

 $M \neq 0 \Rightarrow$ conformal symmetry is broken

(for M = 0 we have the Klebanov-Witten model)

Klebanov, Witten hep-th/9807080

Lack of a UV fixed point (formally KW with infinite rank)

Cascading theories from 5d supergravity

$$5d \mathcal{N} = 2 \text{ SUGRA} \text{ from } 10d \text{ type IIB SUGRA on } T^{1,1}$$

Cassani Faedo hep-th/1008.0883

- $SU(2) \times SU(2) \times U(1)$ sub-truncation
- UV asymptotic analysis only (up to z^4)
- \star **KT solution** describes the UV of

$$SU(N+M) \times SU(N)$$
 KS model $N=kM$ k integer

* SUSY deformed KT solution describes the UV of

$$SU(N+M) \times SU(N)$$
 KS model $N = kM - p$ $p \ll M$

Kachru, Pearson, Verlinde hep-th/0112197

$$p = \# \text{ of } \overline{D}\text{-branes}$$

Spectrum and dictionary

$\mathcal{N} = 2$ multiplet	field fluctuations	AdSmass	Δ
	A-2a	$m^2 = 0$	3
gravity	Ψ	$m = \frac{3}{2}$	$\frac{7}{2}$
	g	$m^2 = 0$	4
	$b^{\Omega} - i c^{\Omega}$	$m^2 = -3$	3

		J		
		$b^{\Omega} - i c^{\Omega}$	$m^2 = -3$	3
$\operatorname{Tr}(W_1^2 + W_2^2) + \dots \qquad \sim$	universal hyper	ζ_ϕ	$m = -\frac{3}{2}$	$\frac{7}{2}$
		$\tau = ie^{-\phi} + C_{(0)}$	$m^2 = 0$	$\frac{1}{4}$
		$t e^{i\theta}$	$m^2 = -3$	3
$\operatorname{Tr}(W_1^2 - W_2^2) + \dots$	Betti hyper	ζ_b	$m = -\frac{3}{2}$	$\frac{7}{2}$
		$b^\Phi, \ \ c^\Phi$	$m^2 = 0$	$\frac{1}{4}$
		V	$m^2 = 12$	6
		ζ_V	$m = \frac{9}{2}$	$\frac{13}{2}$
	:	A + a	$m^2 = 24$	$\tilde{7}$
	massive vector	$b^{\Omega} + i c^{\Omega}$	$m^2 = 21$	7
		ζ_U	$m = -\frac{11}{2}$	$\frac{15}{2}$
\		U	$m^2 = 32$	8
•				

$$e^{-\phi} \longrightarrow \mathcal{O}_{\phi} \xrightarrow{\text{sum}} \frac{1}{g_1^2} + \frac{1}{g_2^2}$$

$$\widetilde{b}^{\Phi} = e^{-\phi} b^{\Phi} \longrightarrow \mathcal{O}_{\widetilde{b}} \longrightarrow \frac{1}{g_1^2} - \frac{1}{g_2^2}$$
difference

Domain wall ansatz and SUSY solution

$$ds^{2} = \frac{1}{z^{2}} \left(e^{2Y(z)} \eta_{\mu\nu} dx^{\mu} dx^{\nu} + e^{2X(z)} dz^{2} \right) \qquad \text{warped domain-wall geometry}$$

$$e^{2Y} = h^{\frac{1}{3}}(z) \;,\; e^{2X} = h^{\frac{4}{3}}(z) \;,\; e^{2U} = h^{\frac{5}{2}}(z)$$

 $b^{\Phi}(z) = -\frac{9}{2}g_s M \; \log{(z/z_0)}$
 $\phi(z) = \log{g_s} \;,\; V = 0$
 KT solution (here obtained in a 5d formalism)

 z_0 is a renormalization scale of the dual field theory

$$h(z) = \frac{27\pi}{4g_s} \left(g_s N + \frac{1}{4} a (g_s M)^2 - a (g_s M)^2 \log(z/z_0) \right)$$
$$a = 3/2\pi$$

SUSY breaking solutions

2-parameter family of **SUSY** solutions

$$\begin{split} e^{2Y} &= h^{\frac{1}{3}}(z) \, h_{2}^{\frac{1}{2}}(z) \, h_{3}^{\frac{1}{2}}(z) \quad , \quad e^{2X} = h^{\frac{4}{3}}(z) \, h_{2}^{\frac{1}{2}}(z) \\ e^{2U} &= h^{\frac{5}{2}}(z) \, h_{2}^{\frac{3}{2}}(z) \quad , \quad e^{2V} = h_{2}^{-\frac{3}{2}}(z) \\ b^{\Phi}(z) &= -\frac{9}{2} g_{s} M \, \log{(z/z_{0})} \\ &+ z^{4} \left[\left(\frac{9\pi N}{4M} + \frac{99}{32} g_{s} M - \frac{27}{4} g_{s} M \log{(z/z_{0})} \right) \mathcal{S} - \frac{9}{8} g_{s} M \varphi \right] + \mathcal{O}(z^{8}) \\ \phi(z) &= \log{g_{s}} + z^{4} \left(3\mathcal{S} \log{(z/z_{0})} + \varphi \right) + \mathcal{O}(z^{8}) \end{split}$$

$$h(z) = \frac{27\pi}{4g_s} \left(g_s N + \frac{1}{4} a (g_s M)^2 - a (g_s M)^2 \log(z/z_0) \right)$$

$$+ \frac{z^4}{g_s} \left[\left(\frac{54\pi g_s N}{64} + \frac{81}{4} \frac{13}{64} (g_s M)^2 - \frac{81}{16} (g_s M)^2 \log(z/z_0) \right) \mathcal{S} - \frac{81}{64} (g_s M)^2 \varphi \right] + \mathcal{O}(z^8)$$

$$h_2(z) = 1 + \frac{2}{3} \mathcal{S} z^4 + \mathcal{O}(z^8) \qquad h_3(z) = 1 + \mathcal{O}(z^8)$$

We need to focus just on up to z^4 order, however the parameterization allows for a deeper solution

Comments on the solutions

- Determined by IR conditions
- Total mass proportional (only!) to it

In the confromal case (M = 0) it corresponds to an independent fluctuation of the dilaton (in spirit similar to dilaton driven confinement)

Gubser hep-th/9902155; Kuperstein, Truijen, Van Riet hep-th/1411.3358

- KS and KT differ at order z^3 by terms proportional to the conifold deformation parameter ϵ
- ϵ terms dominate over z^4 **SUSY** terms, however it does not affect the **SUSY** pattern

Bena, Giecold, Grana, Halmagyi, Massai hep-th/1106.6165

Ward identities in QFT

- QFT relations among correlators descending from a **global symmetry**
- Relations between 1-point functions with arbitrary sources encode relations among higher-point functions upon differentiation wrt the sources
- WI's derived by "Noether's procedure at strong coupling": gauging the global symmetries under which the sources transform
- Invariance of the generating functional (including possible anomalies) under these local gauge transformations leads to relations among the 1-point functions in the presence of sources

Ward identities from holography

- Global symmetries on the boundary are **gauged** in the dual bulk description
- Bulk fields encode arbitrary sources for local operators, which transform under local symmetries in the bulk

• Recipe:

- Partially gauge fix bulk symmetries by picking a radial gauge
- Study the transformation of the sources under the residual local symmetries preserving the gauge

Long story short: Analogous reasonings applied to Penrose-Brown-Henneaux diffeo's associated to boundary Weyl rescalings transformations offers a systematic approach to renormalization

1-point functions

Functional variation of the renormalized action w.r.t. a source at a time

$$\langle T^{\mu\nu} \rangle = \frac{2}{\sqrt{-\widetilde{\gamma}}} \left. \frac{\partial S_{\text{ren}}}{\partial \widetilde{\gamma}_{\mu\nu}} \right|_{\phi, \widetilde{b}^{\Phi}, \widetilde{U}, \widetilde{\Psi}^{+}, \zeta_{\phi}^{-}, \widetilde{\zeta}_{b}^{-}, \widetilde{\zeta}_{U}^{-}}, \quad \langle \overline{S}^{-\mu} \rangle = \frac{-2i}{\sqrt{-\widetilde{\gamma}}} \left. \frac{\partial S_{\text{ren}}}{\partial \widetilde{\Psi}_{\mu}^{+}} \right|_{\widetilde{\gamma}, \phi, \widetilde{b}^{\Phi}, \widetilde{U}, \zeta_{\phi}^{-}, \widetilde{\zeta}_{b}^{-}, \widetilde{\zeta}_{U}^{-}}$$

$$\langle \mathcal{O}_{\phi} \rangle = \frac{1}{2\sqrt{-\widetilde{\gamma}}} \left. \frac{\partial S_{\text{ren}}}{\partial \phi} \right|_{\widetilde{\gamma}, \widetilde{b}^{\Phi}, \widetilde{U}, \widetilde{\Psi}^{+}, \zeta_{\phi}^{-}, \widetilde{\zeta}_{b}^{-}, \widetilde{\zeta}_{U}^{-}}, \quad \langle \overline{\mathcal{O}}_{\zeta_{\phi}}^{+} \rangle = \frac{1}{\sqrt{-\widetilde{\gamma}}} \frac{i}{\sqrt{2}} \left. \frac{\partial S_{\text{ren}}}{\partial \zeta_{\phi}^{-}} \right|_{\widetilde{\gamma}, \phi, \widetilde{b}^{\Phi}, \widetilde{U}, \widetilde{\Psi}^{+}, \widetilde{\zeta}_{b}^{-}, \widetilde{\zeta}_{U}^{-}}$$

$$\langle \mathcal{O}_{\widetilde{b}} \rangle = \frac{1}{2\sqrt{-\widetilde{\gamma}}} \left. \frac{\partial S_{\text{ren}}}{\partial \widetilde{b}^{\Phi}} \right|_{\widetilde{\gamma}, \phi, \widetilde{U}, \widetilde{\Psi}^{+}, \zeta_{\phi}^{-}, \widetilde{\zeta}_{b}^{-}, \widetilde{\zeta}_{U}^{-}}, \quad \langle \overline{\mathcal{O}}_{\widetilde{\zeta}_{b}}^{+} \rangle = \frac{1}{\sqrt{-\widetilde{\gamma}}} \frac{i}{\sqrt{2}} \left. \frac{\partial S_{\text{ren}}}{\partial \widetilde{\zeta}_{b}^{-}} \right|_{\widetilde{\gamma}, \phi, \widetilde{b}^{\Phi}, \widetilde{U}, \widetilde{\Psi}^{+}, \zeta_{\phi}^{-}, \widetilde{\zeta}_{U}^{-}}$$

 $\tilde{\gamma}$ is the field theory metric

$$S_{\rm ren} = S_{\rm reg} + S_{\rm ct}$$

renormalized action at finite cut-off

boundary/bulk coupling at finite radial cut-off

sources identified with induced fields on cut-off shell

Supersymmetry transformations

SUGRA transformations in the bulk

$$\delta_{\epsilon} \zeta^{I} = -\frac{i}{2} \left(\partial \varphi^{I} - \mathcal{G}^{IJ} \partial_{J} \mathcal{W} \right) \epsilon$$

$$\delta_{\epsilon} \Psi_{A} = \left(\nabla_{A} + \frac{1}{6} \mathcal{W} \Gamma_{A} \right) \epsilon$$

$$\delta_{\epsilon} \varphi^I = \frac{i}{2} \bar{\epsilon} \zeta^I + \text{h.c.}$$

$$\delta_{\epsilon} e_A^a = \frac{1}{2} \bar{\epsilon} \Gamma^a \Psi_A + \text{h.c.}$$

Axial gauge (radial) $\Psi_r = 0$

$$\left(\nabla_r + \frac{1}{6}\mathcal{W}\Gamma_r\right)\epsilon = 0$$

asymptotic large radii analysis

$$\epsilon = \epsilon^+ + \epsilon^-$$

parameters of the boundary

SUSY and Superconformal transformations respectively

$$\epsilon^{+}(z,x) = z^{-1/2}h(z)^{1/12}\epsilon_{0}^{+}(x) + \mathcal{O}(z^{4})$$

$$\epsilon^{-}(z,x) = z^{1/2}h(z)^{-1/12}\epsilon_{0}^{-}(x) + \mathcal{O}(z^{4})$$

Supersymmetry Ward identities

Invariance of S_{ren} under a generic SUSY transformation

$$\begin{split} \delta_{\epsilon^{+}} S_{\text{ren}} &= \int d^{4}x \sqrt{-\widetilde{\gamma}} \left(\frac{i}{2} \langle \overline{S}^{-\mu} \rangle \delta_{\epsilon^{+}} \widetilde{\Psi}_{\mu}^{+} + \frac{1}{2} \langle T^{\mu\nu} \rangle \delta_{\epsilon^{+}} \widetilde{\gamma}_{\mu\nu} + 2 \langle \mathcal{O}_{\phi} \rangle \delta_{\epsilon^{+}} \phi + 2 \langle \mathcal{O}_{\widetilde{b}} \rangle \delta_{\epsilon^{+}} \widetilde{b}^{\Phi} \right) \\ &= \int d^{4}x \sqrt{-\widetilde{\gamma}} \left(-\frac{i}{2} e^{-\frac{2}{15} U} \langle \partial_{\mu} \overline{S}^{-\mu} \rangle - \frac{1}{2} \langle T^{\mu\nu} \rangle \overline{\widetilde{\Psi}}_{\mu}^{+} \widetilde{\Gamma}_{\nu} + i \langle \mathcal{O}_{\phi} \rangle \overline{\zeta}_{\phi}^{-} + i \langle \mathcal{O}_{\widetilde{b}} \rangle \overline{\widetilde{\zeta}}_{b}^{-} \right) \epsilon^{+} = 0 \end{split}$$

$$\frac{i}{2}e^{-\frac{2}{15}U}\langle\partial_{\mu}\overline{S}^{-\mu}\rangle = -\frac{1}{2}\langle T^{\mu\nu}\rangle\overline{\widetilde{\Psi}}_{\mu}^{+}\widetilde{\Gamma}_{\nu} + i\langle\mathcal{O}_{\phi}\rangle\overline{\zeta}_{\phi}^{-} + i\langle\mathcal{O}_{\widetilde{b}}\rangle\overline{\widetilde{\zeta}}_{b}^{-}$$

"operator identity" at the cut-off

$$e^{-\frac{2}{15}U}\langle \partial_{\mu}\overline{S}^{-\mu}(x)S_{\nu}^{-}(0)\rangle = 2i\,\widetilde{\Gamma}_{\mu}\langle T_{\nu}^{\mu}\rangle\,\delta^{4}(x,0)$$

further functional differentiation, then sources put to zero

Eventual zero cut-off limit

$$\langle \partial^{\mu} S_{\mu\alpha}(x) \; \bar{S}_{\nu\dot{\beta}}(0) \rangle_{\mathrm{QFT}} = -2 \, \sigma^{\mu}_{\alpha\dot{\beta}} \langle T_{\mu\nu} \rangle_{\mathrm{QFT}} \; \delta^{4}(x) \; \; \; \begin{array}{c} \mathbf{SUSY} \\ \mathbf{Ward \; identity} \end{array}$$

Closing the circle: the *goldstino* mode

Actual evaluation of the bosonic 1-point functions on the **SUSY** background

$$\langle T^{\mu}_{\mu} \rangle_{\mathrm{QFT}} = -12 \mathcal{S}$$

$$\langle \mathcal{O}_{\phi} \rangle_{\mathrm{QFT}} = \frac{(3\mathcal{S} + 4\varphi)}{2}$$

$$\langle \mathcal{O}_{\widetilde{b}} \rangle_{\mathrm{QFT}} = \frac{4}{3 M} \mathcal{S}$$
Yarom hep-th/0506002;
Mulligar hap th/0801 1520

Aharony, Buchel, Yarom hep-th/0506002; DeWolfe, Kachru, Mulligan hep-th/0801.1520

$$\langle S_{\mu\alpha}(x)\,\overline{S}_{\nu\dot{\beta}}(0)\rangle = \cdots - \frac{\mathrm{i}}{4\pi^2}\langle T\rangle\,(\sigma_{\mu}\overline{\sigma}^{\rho}\sigma_{\nu})_{\alpha\dot{\beta}}\frac{x_{\rho}}{x^4}$$

corresponding (upon Fourier transforming) to the presence of a massless pole whose residue is proportional to $\langle T \rangle$...

...THE GOLDSTINO!