Development of the Coulomb excitation technique at INFN LNL and HIL Warsaw

Status and perspectives

Katarzyna Hadynska-Klek

INFN Laboratori Nazionali di Legnaro
Coulomb excitation

- Pure electromagnetic interaction between the collision partners:
 \[d_{\text{min}} = 1.25 \times (A_p^{1/3} + A_t^{1/3}) + 5 \text{ fm} \]
 when the distance of closest approach is saved, nuclear interaction can be neglected (Cline's empirical criterion)
- The excitation process depends on:
 \(E_{\text{beam}}, \ Z \) of projectile and target nuclei, \(\theta_{\text{scattering}} \)
- projectile and target excitation in the same time
- normal and inverse kinematics
- low-energy and high-energy Coulomb excitation (different conditions)
SETUP

- γ-ray detectors (HPGe, scintillation detectors) – to measure γ-ray intensities following Coulomb excitation process

- particle detector - to detect the scattered projectiles and/or recoiling target nuclei (silicon (segmented/PIN diodes), plastic, solar cells, PPAC, MCP,...)
SETUP – why particle detectors?

- to properly describe the **excitation** process (COULEX depends on θ)
- to **identify** the projectile and target nuclei - simultaneous detection of scattered projectiles and recoils, especially important in the RIB experiments
- to provide a clean **trigger** for selecting the events of interest - to select of the real Coulomb excitation events (especially when reaction channels are opened)
- to perform **Doppler correction, the event-by-event kinematics reconstruction**
Coulomb excitation - reorientation effect

- Relative signs of matrix elements → the quadrupole moment – direct distinguish between prolate and oblate shape
 \[Q_s > 0 \] prolate
 \[Q_s = 0 \] spherical
 \[Q_s < 0 \] oblate

- second step excitation through the magnetic substates - influence of the quadrupole moment of the excited state on its excitation cross-section
- strong dependence on both scattering angle and beam energy
- subdivision of the data set into angular ranges – higher sensitivity

\[<2^+||E2||2^+> \sim Q_s \]
Coulomb excitation - information

- Measured gamma yields
- Particle and gamma geometry
- Additional spectroscopic information (if known)

- the set of matrix elements with their relative signs and total correlated errors
- $B(E\lambda), B(M\lambda)$, quadrupole moments can be determined (collectivity)
- Nuclear shapes (Quadrupole Sum Rules method)
Coulomb excitation of the SD band in 42Ca

- beam: 42Ca, 170 MeV, 1pnA, TANDEM XTU, INFN LNL
- targets: 208Pb, 1 mg/cm2, 197Au, 1 mg/cm2
- DANTE: 3 MCP detectors, θ range 100°-144°
- AGATA: 3 clusters
- Spokespersons: P.Napiorkowski (HIL Warsaw), A.Maj (IFJ Krakow), F.Azaiez (IPN Orsay), J.J.Valiente Dobon (INFN LNL)
Coulomb excitation of the SD band in 42Ca

- beam: 42Ca, 170 MeV, 1 pnA, TANDEM XTU, INFN LNL
- targets: 208Pb, 1 mg/cm2, 197Au, 1 mg/cm2
- DANTE: 3 MCP detectors, θ range 100°-144°
- AGATA: 3 clusters
- Spokespersons: P.Napiorkowski (HIL Warsaw), A.Maj (IFJ Krakow), F. Azaiez (IPN Orsay), J.J.Valiente Dobon (INFN LNL)
Coulomb excitation of the SD band in 42Ca

Joint LIA COLL-AGAIN, COPIGAL and POLITA Workshop,
French–Italian–Polish Collaborations on Nuclear Structure and Reactions
Catania, 26-29.04.2016

→ LSSM (F. Nowacki, H. Naidja - Strasbourg)
→ BMF (T. Rodriguez - Madrid)

(Submitted to PRL)
42^{\text{Ca}} experiment, HIL Warsaw

- Complementary run, strange effects in COULEX observed - possible new level at 2048 keV - low-spin level scheme of ^{42}Ca needed revision
- Reaction: $^{12}\text{C}(^{32}\text{S},2p)^{42}\text{Ca}$, 76 MeV
- EAGLE array: 16 HPGe in ACS, Gammapool
- beam-time: 4 days

42Ca experiment, HIL Warsaw

- Complementary run, strange effects in COULEX observed - possible new level at 2048 keV - low-spin level scheme of 42Ca needed revision
- Reaction: $^{12}\text{C}^{(32}\text{S,2p})^{42}\text{Ca}$, 76 MeV
- EAGLE array: 16 HPGe in ACS, Gammapool
- beam-time: 4 days
COULEX at HIL Warsaw

- long tradition, expertise, worldwide collaboration
- COULEX Schools (TU Darmstadt 2011, CERN 2016)
- GOSIA code development (T. Czosnyka, P. Napiorkowski), dedicated workshops (Warsaw, 2008 and 2013), recently also JACOB (genetic algorithm)
- development of particle detector systems (CUDAC, “Munich” pin-diodes chamber, CD detector, CVD diamond detectors)
- Research program:
 - continuation of COULEX of SD structures in A~40 region (UIOslo, IPN Orsay, INFN LNL)
 - octupole deformation in rare-earth nuclei (CEA Saclay)
 - electromagnetic structure of A~100, \(^{104}\text{Pd},^{110}\text{Cd},^{107}\text{Ag}\) (KU Leuven - CEA Saclay)
 - COULEX of odd nuclei - \(^{45}\text{Sc}\) to be submitted at HIL (INFN LNL)

Joint LIA COLL-AGAIN, COPIGAL and POLITA Workshop, French–Italian–Polish Collaborations on Nuclear Structure and Reactions
Catania, 26-29.04.2016
Exotic beams experiments
– SPES project at LNL

• new possibilities for experimental studies of *neutron-rich* nuclei in Italy - RI beams from SPES (Selective Production of Exotic Species) – opportunity for a development of the *Coulomb excitation* technique

• SPES 2010 International Workshop, 15-17.11.2010, INFN LNL (LOIs)

• Proposed LoI for SPES, physics cases (selected):
 - *Coulomb-excitation measurements in nuclei around* 132Sn – 135Sb, 126,128Cd (INFN Firenze, INFN Napoli, CEA Saclay)
 - *Search for Exotic-Octupole deformation effects in n-rich Ce-Xe-Ba Nuclei* (University of Oslo, INFN LNL)
 - *Proton-neutron balance of quadrupole-collective states of even-even n-rich Isotopes* (TU Darmstadt)
 - *Shape coexistence in Kr isotopes towards* $N = 60$ (INFN LNL)
 - *Spectroscopy studies around* 78Ni and beyond $N=50$ via transfer and Coulomb excitation reactions (INFN LNL)
Exotic beams experiments – SPES project at LNL

- energies suitable for Coulomb excitation (2-5 MeV/A)
- beam intensities rather low: particle detectors at forward angles to maximize the statistics - projectile and recoil identification needed

Development of the particle detector to be used at LNL needed
300 μm thick silicon segmented detector – GARFIELD@LNL Ring Counter array segments

Independent sectors segmented in 8 strips in the junction side, the rear surface (ohmic side) consists of a unique electrode

Guard ring between strips

First in-beam test of SPIDER at LABEC - INFN Firenze - population of the first 2+ level in ^{110}Pd using the reaction $^{110}\text{Pd}(p,p')^{110}\text{Pd}^*$ @5MeV

Second in-beam test at LABEC - INFN Firenze with the ^7Li beam (COULEX with ^{27}Al target)
SPIDER – tests in GALILEO chamber

- “Cone-like” configuration – 7 sectors suitable for the existing GALILEO reaction chamber, backward angles – max diameter: 200 mm, depth: 45 mm, distance of 80 mm from the target, angles between 124-169°

- Existing EUCLIDES electronics system (power supply, preamplifiers, DAQ) can be used

- Existing GALILEO configuration of 25 HPGe, future 40 HPGe, triple clusters, (+LaBr$_3$)

- Possible usage with other ancillary devices (solar cells, plunger)

- Commissioning in-beam run at LNL in July 2016
SPIDER – commissioning run

- ^{66}Zn continuous beam from TANDEM accelerator, 4 days accepted, $E=240 \text{ MeV}, I=1\text{pnA}$
- Target: $^{208}\text{Pb}, 1 \text{ mg/cm}^2$
- GALILEO (25 HPGe) + SPIDER (7 segmented detectors)
- Goals:
 - $\text{B}(E2; 2^+_1 \rightarrow 0^+_1)$ and $Q_s(2^+_1)$
 - in addition: collectivity of $4^+_1 \rightarrow 2^+_1$ transition
 - in addition: structure of 0^+_2 and 2^+_2 states

Joint LIA COLL-AGAIN, COPIGAL and POLITA Workshop,
French–Italian–Polish Collaborations on Nuclear Structure and Reactions
Catania, 26-29.04.2016
COULEX of 66Zn, $B(E2; 2_1^+ \rightarrow 0_1^+)$, $Q_s(2_1^+)$

- Previous COULEX experiment at TOKAI/JAERI, Japan:
 - GEMINI array, 12 HPGe+ACS, 13cm from the target
 - LUNA array, position-sensitive Si telescopes, 30% of the solid angle, mostly forward
 - 1.3 mg/cm2 natPb target, 66h of 5nA 66Zn beam

- Measured $B(E2; 2_1^+ \rightarrow 0_1^+) = 288(18)$ e2fm4 and $Q_s(2_1^+) = +24(8)$ efm2
 (slightly triaxial/oblate)

$$\begin{array}{lll}
\text{Experimental} & \text{present} & \text{NDS} \\
B(E2; 2_1^+ \rightarrow 0_1^+) & 288 (18) & 284 (11) \\
B(E2; 2_2^+ \rightarrow 0_1^+) & 0.06 (28) & 0.05 (2) \\
B(E2; 2_2^+ \rightarrow 2_1^+) & 650 (228) & 5700 (220) \\
B(E2; 4_1^+ \rightarrow 2_1^+) & 278 (11) & 560 (130) \\
Q(2_1^+) & +24 (8)
\end{array}$$

COULEX with stable beams, perspective

Selected projects with GALILEO+SPIDER setup:

- Coulomb excitation of 12C (INFN LNL – iThemba Labs)
- The nuclear structure evolution along the stable Xe isotopic chain (INFN Firenze)
- SD bands in A~40 region (Ca, Ar, Ti isotopes) (INFN LNL – HIL Warsaw)
SPIDER – collaboration

M. Rocchini (INFN Firenze), K. Hadyńska-Klęk (INFN Legnaro)
A. Nannini, B. Melon, M. Ottanelli
INFN, Sezione di Firenze, Firenze, Italy
A. Perego, P. Sona
Università degli Studi di Firenze, Italy
J.J. Valiente-Dobon, G. de Angelis, A. Goasduff, G. Jaworski, D.R. Napoli, M. Siciliano
INFN, Laboratori Nazionali di Legnaro, Legnaro, Italy
D. Mengoni, A. Bosso, D. Bazzacco, S. Lenzi, S. Lunardi, R. Menegazzo, P.R. John, F. Recchia, D. Testov
Dipartimento di Fisica e Astronomia and INFN, Sezione di Padova, Padova, Italy
M. Zielińska
CEA Saclay, France
M. Wiedeking, C.P. Brits
iThemba LABS, South Africa
D. Doherty
University of York, UK
A. Gørgen, M. Klintefjord, F. Bello Garrote, V. Modamio, T. Wiborg Hagen, E. Sahin
University of Oslo, Norway
P. Napiorkowski, K. Wrzosek-Lipska, M. Komorowska, M. Matejska-Minda, M. Palacz, L. Próchnia, J. Srebrny
HIL Warsaw, Poland
M. Kicińska-Habior
University of Warsaw, Poland
P. Bednarczyk, M. Ciemała, M. Kmiecik, M. Krzysiek, A. Maj, B. Wasilewska
IFJ Krakow, Poland
G. Benzoni
Dipartimento di Fisica and INFN, Sezione di Milano, Milano, Italy
A. Gadea
IFIC Valencia, Spain
C. Fahlander
Lund University, Sweden
Summary and outlook

- Perspective of COULEX with stable beams at INFN LNL (ALPI, PIAVE, TANDEM XTU facilities)
- Future RIB from SPES
- Development of a new heavy ion detector, SPIDER
- Strong collaboration

Thank you