



# Study of stellar nucleosynthesis using radioactive beams at GANIL

Faïrouz Hammache (IPN-Orsay)

Joint LIA COLL-AGAIN, COPIGAL, and POLITA workshop LNS Catania, April 26-29, 2016

## **Nuclear astrophysics @ GANIL**



 <sup>60</sup>Fe nucleosynthesis & γ-ray astronomy Coll. IPN-GANIL-IRFU-CSNSM-RIKEN
 S.Giron, F. Hammache, N. de Séréville, P. Roussel et al. Ph.D. thesis & paper in progress





- <sup>18</sup>F nucleosynthesis in novae
 → 2 experiments

Coll. GANIL-Edimbourgh-IPN-York-CSNSM

• F. Boulay, B. Bastin, F. de Oliveira et al. Ph.D. thesis & paper in progress

• D. J. Mountford, A. Murphy et al. PRC 2012



Electron screening effect on β-decay studies
 Coll. GANIL-VINCA-LPC-Bucharest-IPN-CSNSM-CEA-CRISMAT
 P. Ujic, F. de Oliveira, M. Lewitowicz et al. PRL 2013

Test experiment for direct measurements of  $\sigma_{(\alpha,g)}$  of p-nuclei using the Wien Filter of LISE Coll. NCSR(Demokritos)-GANIL

## <sup>60</sup>Fe nucleosynthesis & γ-ray astronomy



<sup>60</sup>Fe mainly produced in massive stars & released in ISM by subsequent Core Collapse supernovae type II



Production of <sup>60</sup>Fe depends strongly on the uncertain <sup>59</sup>Fe $(n,\gamma)^{60}$ Fe & <sup>60</sup>Fe $(n,\gamma)^{61}$ Fe cross sections

## $^{60}$ Fe(n, $\gamma$ ) $^{61}$ Fe status

Reaction rate: HF calculations (resonant capture) + shell-model (direct capture)



Direct  $\sigma_{60Fe(n,\gamma)61Fe} \rightarrow E_x$ , l & C<sup>2</sup>S of <sup>61</sup>Fe  $\rightarrow$  (d,p) transfer reaction

## **Study of the direct component <sup>60</sup>Fe(n,γ)<sup>61</sup>Fe via <sup>2</sup>H(<sup>60</sup>Fe,pγ)<sup>61</sup>Fe transfer reaction @ LISE/GANIL**



**S1**: Si annular detector (500  $\mu$ m, 64 strips in  $\Theta$  and 16 in  $\Phi$ )

## **Experimental Results:** <sup>61</sup>Fe excitation energy spectrum



- FWHM(peak) > 800 keV (expected energy resolution)  $\rightarrow$  population of 2-3 states
- Population of the 861 keV ( $J^{\pi}=9/2+$ ) isomeric state ( $\tau=239$  ns)

S. Giron PhD. thesis

## **Experimental Results:** <sup>61</sup>Fe excitation energy spectrum



- FWHM(peak) > 800 keV (expected energy resolution)  $\rightarrow$  population of 2-3 states
- Population of the 861 keV ( $J^{\pi}=9/2+$ ) isomeric state ( $\tau=239$  ns)

S. Giron PhD. thesis

## **Experimental Results : γ-ray spectra (1<sup>st</sup> peak)**



- Population of 207 & 391 keV states in the 1<sup>st</sup> peak
- No clear identification of the γ-ray partners of the 207 & 391 keV transitions in the range 1 MeV <Ex<2 MeV → large background, low statistics (low cross sections, efficiency ⊥)</li>

## **Experimental Results: Spectroscopic factors**





### Comparison with shell model calculations

## Direct $\sigma_{60Fe(n,\gamma)61Fe}$



Very **good agreement** between SM predictions (K.Sieja) & experimental results → SM calculations are reliable in this mass region

$$\sigma_{(n,\gamma)} = \sum_{i} C_{i}^{2} S_{i} \sigma_{i}^{DC} = \sum_{i} C_{i}^{2} S_{i} \left| \int_{r=0}^{\infty} \phi_{f} \theta_{em} \phi_{i} d\vec{r} \right|^{2}$$





<u>@ 25 keV:</u>  $\sigma_{total}$ =10 mbarn (Activation measurement) This work:  $\sigma_{direct}$  =0.2 mbarn → 2% (total) → Resonant capture dominates



## <sup>18</sup>F nucleosynthesis & novae

<sup>18</sup>F (T<sub>1/2</sub> = 2h) β+ emitter  $\rightarrow$  e+ e- interaction → Main contributor to 511 keV γ-rays during nova outburst



Uncertainty  $\approx 40$  on the  $\gamma$ -ray flux

- The detection of the 511 keV radiation would provide insight into nova mechanism
- The amount of <sup>18</sup>F produced in nova explosion depends critically on the rates of <sup>18</sup>F(p, $\alpha$ )<sup>15</sup>O & <sup>18</sup>F(p, $\gamma$ )<sup>19</sup>Ne @ T = 1-4×10<sup>8</sup> K
- The competition between  ${}^{18}F(p,\alpha){}^{15}O$ and  ${}^{18}F\beta$ -decay has consequences on a possible observation of the 511 keV  $\gamma$ ray from novae (ex: Integral): *not yet detected*

## <sup>18</sup>F(p,α)<sup>15</sup>O current status

#### **Direct measurements**

- Cross section of  ${}^{18}F + p$  (inverse kinematics)
  - Low beam intensity
  - Beam impurities (<sup>18</sup>O)
  - Low cross section

Mountford et al. 2012 Beer et al. 2011 de Séréville et al. 2009 Chae et al. 2006 Bardayan et al. 2003



#### **Indirect measurements**

- Study of <sup>19</sup>Ne or the mirror nucleus <sup>19</sup>F
  → properties (Ex, Spin, width) close to proton threshold
  - Cherubini et al. 2015 (THM)
  - Laird et al. 2013 (Transfer)
  - Adekola et al. 2011 (Transfer)
  - Dalouzy et al. 2009 (Inelastic scattering)
  - Murphy et al. 2009 (Resonant elastic scattering)
  - de Séréville et al. 2007 (Transfer)
  - Bardayan et al. 2001 (Transfer)
  - Utku et al. 1998 (Transfer)

Large uncertainties on the astrophysical S-factor at the Gamow peak: factor ~ 40  $\rightarrow$  Ambiguities in the spin assignment

#### **Experimental Setup**



## **Results:** Excitation energy, width and branching ratio



#### **Results:** Analysis of key states



## **Astrophysical S-factor & reaction rate**



## **Astrophysical impact**

Hernanz,Gomez-Gomar, José ,Coc (2001) <sup>18</sup>F detection limit for ONe 1.15 M<sub>☉</sub> is 3.7 kpc

With N times less  ${}^{18}F$   $\rightarrow$  limit radius of detectability reduces by N<sup>1/2</sup>

This work:  $N=5 \rightarrow 1.7$  kpc

Nova detection probability for INTEGRAL :

- galaxy 30 novae per year
- 4 novae per decade





## **Perspectives** @ GANIL

Study of key nuclear reactions involved in explosive nucleosynthesis with the new SPIRAL1 beams, new setups (ACTAR, MUGAST, ...),...

Direct &

Indirect

#### Novae:

using radioactive beams (SPIRAL1)

→  ${}^{25}Al(p,\gamma){}^{26}Si$ →  ${}^{30}P(p,\gamma){}^{31}S$  Indirect measurements

using high intense proton beams of NFS →<sup>28</sup>Si(p,γ)<sup>29</sup>P →<sup>29</sup>Si(p,γ)<sup>30</sup>P Direct measurements

#### X-ray bursts:

using radioactive beams (SPIRAL1 & LISE) ۲

 $\rightarrow$ key ( $\alpha$ ,p) reactions at waiting points  $\rightarrow$ key (p, $\gamma$ ) reactions at waiting points





## **Collaborations**

#### **FRANCE**

- IPN, Orsay
- GANIL, Caen
- CEA, IRFU, Saclay
- CSNSM, Orsay
- LPC, Caen
- IPHC, Strasbourg

#### <u>UK</u>

- University of Edinburgh
- University of York

#### **SPAIN**

- University of Huelva
- University of Santiago de Compostel

#### **ROMANIA**

• IFIN/HH,rez institires Bucharest

#### **SERBIA**

• VINCA Institute, Belgrade

#### CZECH REPUBLIC

• NRI, Rez

#### POLAND

• Niewodniczanski Institute, Krakow

#### **GERMANY**

• GSI, Darmstadt

#### PORTUGAL

• CFNU, Lisboa

#### JAPAN

• RIKEN, Wako