Joint LIA COLL-AGAIN, COPIGAL, and POLITA Workshop French-Italian-Polish Collaborations April 26-29, 2016

LNS Catania

Nuclear astrophysics with indirect approaches: ANC and Trojan Horse Method

Marco La Cognata On behalf of the ASFIN Collaboration

Italian-Polish & Italian-French collaboration

A. Anzalone¹, M. Busso⁴, S. Cherubini^{1,2}, G. D'Agata^{1,2}, G.L. Guardo¹, M. Gulino^{1,3}, I. Indelicato¹, M. La Cognata¹, L. Lamia¹, D. Lattuada¹, S.
Palmerini⁴, R.G. Pizzone¹, S.M.R. Puglia¹, G.G. Rapisarda¹, S. Romano^{1,2}, M.L. Sergi¹, R. Spartà¹, C. Spitaleri^{1,2}, O. Trippella⁴, A. Tumino^{1,3}

¹INFN Laboratori Nazionali del Sud, Catania ²Department of Physics and Astronomy, University of Catania, ³Kore University, Enna ⁴University of Perugia and INFN-PG

S. Kliczewski⁵⁺, E. Piasecki⁶, R. Siudak⁵, A. Trzcińska⁶, M. Wolińska-Cichocka⁶

⁵The H. Niewodniczański Institute of Nuclear Physics PAN, ⁶Heavy Ion Laboratory, Univ. of Warsaw ⁺Deceased

A. Coc⁷, N. de Séréville⁸, V. Guimaraes, F. Hammache⁸

⁷Centre de Spectrométrie Nucléaire et de Spectrométrie de Masse, IN2P3, Orsay ⁸Institut de Physique Nucléaire, IN2P3, Orsay

Outline of the talk

- Why indirect approaches are useful in nuclear astrophysics (and beyond)
- ✓ Indirect methods: ANC & THM
- ✓ Some details about THM
- ✓ Two physical cases (with unstable and stable beams):
 - **The** ¹⁸F(p, α)¹⁵O reaction
 - \Box The ¹⁶O(¹⁶O, α)²⁰Ne reaction
- ✓ Summary

The Scientific Case

The purpose of nuclear Nuclear parameters astrophysics is to (cross provide reliable sections, ...) nuclear physics input **Elemental yield** \rightarrow comparison with abundances observed in stars Astrophysical models: how a and meteorites to star works validate models Model input Change the model until parameters: observables are magnetic field, metallicity, ... matched by predictions

Astrophysical models are very complex: assumptions on stellar structure and on stellar parameters (age, mass...) \rightarrow need of multiple independent constrain Key information: how does the mixing mechanism work? Mixing transports the produced nuclides from stellar inner layers to the surface where they are observed Direct...

How to measure the $A+x \rightarrow c+C$ reaction in a *direct* way?

It looks *quite* simple!

Pros and cons

Straightforward but complicated

✓ Coulomb barrier exponentially suppresses the cross section (E<100 keV)</p>

- → low count rate and low statistics
- → high background and poor signal-to-noise ratio
- → no access to the low energy region
- ✓ Straggling
 - \rightarrow possible errors in energy calibration
 - ightarrow poor energy and angular resolution
- ✓ Electron screening
 - → trend of the bare-nucleus S-factor altered
 - ightarrow systematic error due to poor knowledge of the process

... even in the few cases when the low-energy S-factor has been measured the barenucleus S-factor has not being determined accurately

...and indirect measurements

several reaction mechanisms link the two channels

Complicated but rewarding

High energy experiments: up to several hundreds MeV

- \rightarrow no Coulomb barrier suppression
- \rightarrow negligible straggling
- \rightarrow no electron screening

The reaction mechanism of interest has to be singled out to apply **nuclear reaction**

Theory

ightarrow Only a fraction of the data is used during the analysis

The Methods [see Rep. Prog. Phys. 77 (2014) 106901]

In the Coulomb dissociation, a virtual photon beam is used to a photodisintegration reaction; the detailed balance principle is then used to recover the cross section of the relevant radiative capture reaction

In the Asymptotic Normalization Coefficient (ANC) approach, a transfer reaction to a bound state is measured to deduce the normalization constant of the bound state wave function, prop. to the $A(x,\gamma)F$ c.s.

In the Trojan Horse Method, a transfer reaction to an unbound system is used to measure the c.s. of the A(x,c)C process. C and c can be charged or neutral particles (no photons)

Few words about ANC

A(B+p) B d(a+p

The same coefficient enters into the cross section of the transfer process

 $\frac{d\sigma}{d\Omega} = (C_{Bpl_Aj_A}^A)^2 (C_{apl_dj_d}^d)^2 \frac{\sigma_{l_Aj_Al_dj_d}^B}{b_{Bpl_Aj_A}^2 b_{apl_dj_A}^2}$

THM: basic features

From $A+a(x \oplus s) \rightarrow c+C+s @ 10-60 \text{ MeV}$ $A+x \rightarrow c+C @ 5-20 \text{ keV}$ By selecting the QF contribution Though $E_A \gg V_{Coul}$ it is possible to measure at the Gamow peak since: $E_{c.m.}=E_{A-x}-Q_{x-s}$

Pros:

- reduced systematic errors due to straggling, background...
- magnifying glass effect

Cons:

- off-shell cross section deduced (x → virtual particle)
- no absolute units

In PWIA we get:

$$\frac{d^{3}\sigma}{dE_{C}d\Omega_{C}d\Omega_{c}} \times \mathrm{KF} |\phi(-\vec{p_{b}})|^{2} \cdot \left(\frac{d\sigma}{d\Omega_{c.m.}}\right)^{\mathrm{off}}$$
From the experiment
Evaluated through a MC code
HOES 2-body cross section

How it looks like in the general case

R. Tribble et al., Rep. Prog. Phys. **77** (2014) 106901

This accounts for:

- HOES effects
- Normalization

Moreover: Possible generalization to CDCC & DWBA

However \rightarrow Very complicated!

$$M^{\text{PWA(prior)}}(P, k_{aA}) = (2\pi)^{2} \sqrt{\frac{1}{\mu_{bB}k_{bB}}} \varphi_{a}(p_{sx})$$

$$\times \sum_{J_{F}M_{F}j'll'm_{j'}m_{l}m_{l'}M_{n}} i^{l+l'} \langle jm_{j}lm_{l}|J_{F}M_{F} \rangle \langle j'm_{j'}l'm_{l'}|J_{F}M_{F} \rangle$$

$$\times \langle J_{x}M_{x}J_{A}M_{A}|j'm_{j'} \rangle \langle J_{s}M_{s}J_{x}M_{x}|J_{a}M_{a} \rangle e^{-i\delta_{bBl}^{hs}}Y_{lm_{l}}(-\hat{k}_{bB})$$

$$\times \sum_{\nu,\tau=1}^{N} [\Gamma_{\nu bBjlJ_{F}}(E_{bB})]^{1/2} [A^{-1}]_{\nu\tau}Y_{l'm_{l'}}^{*}(\hat{p}_{xA})$$

$$\times \sqrt{\frac{R_{xA}}{\mu_{xA}}} [\Gamma_{\nu xAl'j'J_{F}}(E_{xA})]^{1/2} P_{l'}^{-1/2}(k_{xA}, R_{xA})(j_{l'}(p_{xA}R_{xA})$$

$$\times [(B_{xAl'}(k_{xA}, R_{xA}) - 1) - D_{xAl'}(p_{xA}, R_{xA})]$$

$$+ 2Z_{x}Z_{A}e^{2}\mu_{xA}\int_{R_{xA}}^{\infty} dr_{xA} \frac{O_{l'}(k_{xA}, R_{xA})}{O_{l'}(k_{xA}, R_{xA})}j_{l'}(p_{xA}r_{xA})).$$

Let's skip the math...

THM equations in a special case: resonant reactions

Upper vertex: direct *a* breakup M_i(E) is the amplitude of the transfer Using the kinematics of three body reactions:

$$E_{Ax} = \frac{m_x}{m_x + m_A} E_A - \frac{p_s^2}{2\mu_{sF}} + \frac{\mathbf{p}_s \cdot \mathbf{p}_A}{m_x + m_A} - \varepsilon_{sx}$$

It is possible to achieve negative energies in the A-x channel... Out of reach for direct measurements

How to deal with negative energies?

Standard R-Matrix approach cannot be applied to extract the resonance parameters of the A(x,c)C reaction because x is virtual \rightarrow Modified R-Matrix is introduced instead (A. Mukhamedzhanov 2010)

In the case of a resonant THM reaction the cross section takes the form:

$$\frac{d^2\sigma}{dE_{Cc}\,d\Omega_s} \propto \frac{\Gamma_{(Cc)_i}(E)\,|M_i(E)|^2}{(E-E_{R_i})^2 + \Gamma_i^2(E)/4}$$

M² is proportional to the ANC of the F state populated in the transfer reaction

Merging together ANC and THM \rightarrow deep connection of these two indirect methods

Recent Results: the ¹⁸F(p,α)¹⁵O Reaction

PHYSICAL REVIEW C 92, 015805 (2015)

First application of the Trojan horse method with a radioactive ion beam: Study of the ${}^{18}F(p,\alpha){}^{15}O$ reaction at astrophysical energies

S. Cherubini,^{1,2,*} M. Gulino,^{1,3} C. Spitaleri,^{1,2} G. G. Rapisarda,^{1,2} M. La Cognata,¹ L. Lamia,² R. G. Pizzone,¹ S. Romano,^{1,2} S. Kubono,^{4,5} H. Yamaguchi,⁵ S. Hayakawa,^{1,5} Y. Wakabayashi,⁵ N. Iwasa,⁶ S. Kato,⁷ T. Komatsubara,⁸ T. Teranishi,⁹ A. Coc,¹⁰ N. de Séréville,¹¹ F. Hammache,¹¹ G. Kiss,¹² S. Bishop,^{4,13} and D. N. Binh^{5,14}

Scientific case

Hydrogen surface layer accumulates on white dwarf through accretion disk from the companion atmosphere

As more hydrogen is accreted, the temperature at the bottom of this surface layer increases until sufficient to trigger nuclear fusion reactions (about 0.2-0.4 10⁹ K).

Thermonuclear runaway \rightarrow explosive burning of hydrogen

The γ -ray emission following the nova explosion is dominated by the 511 keV energy line, coming from the annihilation of positrons produced by the decay of radioactive nuclei. Among them, ¹⁸F is the most important source Abundance determined by production vs. destruction rate \rightarrow dominated by ¹⁸F(p, α)¹⁵O

The ¹⁸F(p, α)¹⁵O experiment

Experiment performed @ CRIB – CNS – RIKEN using a 18F RIB \rightarrow first THM experiment with unstable beams

ASTRHO: Array of Silicons for TRojan HOrse

Selection of the ${}^{2}H({}^{18}F,\alpha{}^{15}O)n$ channel and of the QF mechanism

Experimental Q-value spectrum with no conditions (dashed line)

Q-value spectrum with particle selection (black solid histogram)

A single peak shows up, centered at the value 0.668 MeV, very close to the theoretical Q value (0.658 MeV) for the ${}^{2}H({}^{18}F,\alpha{}^{15}O)n$ reaction

The arrow represents the theoretical Q value and the red line is a Gaussian fit with μ = 0.668 MeV and σ = 0.322 MeV, in agreement with the expected theoretical value and the experimental resolution

Solid circles: measured momentum distribution of the neutron inside deuteron using the ${}^{2}H({}^{18}F,\alpha{}^{15}O)n$ reaction

Solid line: theoretical momentum distribution, given by the squared Hulthén function in momentum space

→ Good agreement implies that the reaction mechanism is QF and the THM equations can be applied to deduce the cross section of the ${}^{18}F(p,\alpha){}^{15}O$ reaction from the one of the ${}^{2}H({}^{18}F,\alpha{}^{15}O)n$ reaction

Recent Results: the ¹⁸F(p,α)¹⁵O Reaction

The ${}^{18}F(p,\alpha){}^{15}O$ astrophysical S factor from the present experiment.

<u>Solid circles</u>: THM experimental data with the assumption of $J^{\pi} = 3/2^+$ for the resonance at E=6460 keV (upper limit)

<u>Open circles</u>: ${}^{18}F(p,\alpha){}^{15}O$ astrophysical S factor corresponding to the assumption of $J^{\pi} = 5/2^{-}$ (lower limit)

Blue solid and red dashed lines: calculations reported and discussed in Beer et al. PRC 83 (2011) 042801 smeared to the present experimental resolution ($\sigma = 53$ keV). The difference is given by the alternative interference pattern adopted in the calculations.

Each pair of curves represents the upper and lower limit for each calculation

Around 700 keV: normalization region

Elsewhere: fair agreement with the dashed lines if $J^{\pi} = 3/2^+$ is assumed

Recent Results: the ${}^{16}O({}^{16}O,\alpha){}^{28}Si$ Reaction - Introduction (thanks to Dr. S. Hayakawa)

¹²C+¹²C, ¹²C+¹⁶O, ¹⁶O+¹⁶O fusion... important in explosive carbon and oxygen burning phases in massive stars

 $(> 8 M_{\odot} \text{ for } {}^{16}\text{O} + {}^{16}\text{O})$

- Timescale of the burning phase
 Nucleosynthesis productions

Overview of astrophysical S-factor $(1-4 \text{ GK} \Leftrightarrow 3-12 \text{ MeV})$

A. Diaz-Torres et al. / Physics Letters B 652 (2007) 255-258

Main issues:

- Inconsistencies among different experiments at lower energies
- Inconsistencies among different theoretical extrapolations
- Lack of data below 7 MeV

1 order of magnitude uncertainty at low energies

Recent Results: the ${}^{16}O({}^{16}O,\alpha){}^{28}Si$ Reaction - THM approach

 $E_{\rm Ne}$ = 45 MeV ⇔ $E_{\rm Ne-O}$ = 20 MeV above Coulomb barrier (~17 MeV) Incident energy is consumed to breakup ²⁰Ne into ¹⁶O+α ($E_{\rm binding}$ = 4.73 MeV) → Two-body reaction could take place at low ¹⁶O-¹⁶O relative energies

Detected in the experiment

Three particles in the exit channel: All the kinematic variables can be calculated from the energies and the emission angles of two of them \rightarrow we choose the most convenient!

2 Performed measurements:

(a) E_{20Ne} = 45 MeV @Heavy Ion Lab., Warsaw
 → For normalization of the two-body cross section to the direct data
 (b) E_{20Ne} = 35 MeV @Inst. Nucl. Phys., Astana
 → Approach to lower energies

The ${}^{16}O({}^{16}O,\alpha){}^{28}Si$ via THM: the experiment

The ¹⁶O(¹⁶O,α)²⁸Si via THM: preliminary results

¹⁶O

a)

160

 (n, p, α)

Experimental momentum distribution of α inside ²⁰Ne from Q_0 and Q_1 data

No single peak at 0 MeV/c → Evidence of a more complicated breakup mechanism

← Calculation by R. Yarmukhamedov

α-¹⁶O breakup in
 two steps via the
 1st excited state of
 ²⁰Ne?

Summary

- Nuclear astrophysics aims at supplying cross sections (astrophysical factors) for reactions of astrophysical importance to be included in nucleosynthesis, energy production and stellar evolution codes
- Since stars are "cold", low energies are generally involved making it difficult to measure such cross sections at astrophysical energies (signal-to-noise ratio approaching zero)
- Indirect methods such as THM and ANC (among others) have proved very effective in the measurement of such cross sections at low energies
- Over the last years, joint projects have been jointly run by Italian-French and Italian-Polish collaborations to tackle fundamental nuclear astrophysics questions
- In particular, we have discussed here the:

(1) ¹⁸F(p, α)¹⁵O Reaction \rightarrow Novae nucleosynthesis

(2) ¹⁶O(¹⁶O, α)²⁸Si Reaction \rightarrow nuclear burning in evolved massive stars