Astrophysical studies with Split-Pole spectrometer at the ALTO facility

> Nicolas de Séréville Institut de Physique Nucléaire d'Orsay

Joint LIA COLL-AGAIN, COPIGAL and POLITA workshop, 2016, April 26th - 29th

Nucleosynthesis studies with Split-Pole

Experimental study of nucleosynthesis: (Coll.: CSNSM, York, Algeria, GANIL, ...)

• AGB stars and the ${}^{13}C(\alpha,n){}^{16}O$ reaction $\rightarrow {}^{13}C({}^{7}Li,t){}^{16}O$ M. P.

M. Pellegriti, F. Hammache et al, PRC Rapid (2008)

- Massive stars and the ${}^{12}C(\alpha,\gamma){}^{16}O$ reaction $\rightarrow {}^{12}C({}^{7}Li,t){}^{16}O$ N. Oulebsir, F. Hammache et al, PRC (2012)
- Big-Bang nucleosynthesis and the ⁷Li cosmological problem \rightarrow ^{10,11}B(³He,t)^{10,11}C F. Hammache et al, PRC Rapid (2013)
- Massive stars and ²⁶Al nucleosynthesis $\rightarrow {}^{27}Al(p,p'){}^{27}Al(p|\alpha)$ S. Benamara, N. de Séréville et al, PRC (2014)
- ¹⁹Ne spectroscopy for classical novae & X-ray bursts \rightarrow ¹⁹F(³He,t)¹⁹Ne(p| α) J. Riley, A. M. Laird, N. de Séréville, under analysis
- Massive stars & SNIa and the ${}^{12}C + {}^{12}C$ reaction $\rightarrow {}^{24}Mg(p,p'){}^{24}Mg$ V. Guimares, I. Stefan, under analysis
- Massive stars and ¹⁵N nucleosynthesis \rightarrow ¹⁹F(p,p')¹⁹F(p| α) F. Hammache, under analysis

Nucleosynthesis studies with Split-Pole

Experimental study of nucleosynthesis: (Coll.: CSNSM, York, Algeria, GANIL, ...)

• AGB stars and the ${}^{13}C(\alpha,n){}^{16}O$ reaction $\rightarrow {}^{13}C({}^{7}Li,t){}^{16}O$ M. Po

M. Pellegriti, F. Hammache et al, PRC Rapid (2008)

- Massive stars and the ${}^{12}C(\alpha,\gamma){}^{16}O$ reaction $\rightarrow {}^{12}C({}^{7}Li,t){}^{16}O$ N. Oulebsir, F. Hammache et al, PRC (2012)
- Big-Bang nucleosynthesis and the ⁷Li cosmological problem \rightarrow ^{10,11}B(³He,t)^{10,11}C F. Hammache et al, PRC Rapid (2013)
- Massive stars and ²⁶Al nucleosynthesis $\rightarrow {}^{27}Al(p,p'){}^{27}Al(p|\alpha)$ S. Benamara, N. de Séréville et al, PRC (2014)
- ¹⁹Ne spectroscopy for classical novae & X-ray bursts \rightarrow ¹⁹F(³He,t)¹⁹Ne(p| α) J. Riley, A. M. Laird, N. de Séréville, under analysis
- Massive stars & SNIa and the ${}^{12}C + {}^{12}C$ reaction $\rightarrow {}^{24}Mg(p,p'){}^{24}Mg$ V. Guimares, I. Stefan, under analysis
- Massive stars and ¹⁵N nucleosynthesis \rightarrow ¹⁹F(p,p')¹⁹F(p| α) F. Hammache, under analysis

Classical novae and γ -ray emission

Final evolution of a close binary system

- Accretion of H-rich material on the WD from its companion star
- Thermonuclear runaway in convective envelope
- Expansion and shell ejection

Constraint models

- Multi wavelengths observations
- γ-ray observations
 - \rightarrow isotopic abundances
 - → explosion mechanism, novae rate ejected shell properties ...

Observations and predictions

- E > 100 MeV (FERMI/LAT) Abdo et al. Science (2010)
- γ-ray lines (⁷Be, ¹⁸F, ²²Na, ²⁶Al)

¹⁸F yield depends crucially on uncertain¹⁸F(p,α)¹⁵O reaction

¹⁸ $F(p,\alpha)^{15}O$ (some) recent studies

 ${}^{18}F(p,\alpha){}^{15}O$ is the focus of intensive investigation since more than two decades

Direct measurement in Gamow peak

- Large error bar (statistics)
- Need for lower energy data

Interference effects in Gamow peak

- 3/2+ resonances: "8, 38keV" and 665 keV
- 1/2+ resonances: sub-threshold + 1.45 MeV

Experimental set-up

- The ¹⁹F(³He,t)¹⁹Ne* charge exchange reaction has already shown to be very little selective in populating ¹⁹Ne excited states.
- Coincidence measurement, ¹⁹Ne states decay via α/p emission

Focal-plane detector:

- Position sensitive gas chamber (Bρ)
- ∆E proportional gas counter (PID)
- E plastic scintillator (PID + ToF)

- 6 W1 (16+16) DSSSDs
 → angular distribution measurement
- ε ~ 15%, ΔE ~ 20 keV
- Thick shield between 0° FC and DSSSDs

Coincidence events selection

Particle identification in Split-Pole

Coincidence events (ToF selection)

α/p decay identification

Coincidence spectra

Key resonances are easily observed
Branching ratio determination ______

BR = "(coinc / ε_{geom})" / singles

Angular correlations

J. Riley, A. M. Laird, NdS, under analysis

²⁶Al observations

γ -rays observations

Credit: MPE Garching / R. Diehl

- Cumulative emission in the galactic plane
- Steady state mass of ${}^{26}AI: \rightarrow 2.8 \pm 0.8 \ M_{\odot}$ (Diehl et al. 2006)

Stellar sources:

- ccSN, Wolf-Rayet phase
- AGB, classical novae

Meteoritic observations

Astrophysical context of SS formation

- Last minute stellar nucleosynthesis
 event:
 - \rightarrow ccSN (Cameron et al. 1995)
 - \rightarrow WR (Tatischeff et al. 2011)
 - \rightarrow AGB (Busso et al. 2003)

Good understanding of ²⁶Al nucleosynthesis in massive stars needed

²⁶Al nucleosynthesis in massive stars

Sensitivity study:

- Post-processing
 - \rightarrow (ρ ,T) from Limongi et al. 06
- Nuclear reaction network
 - \rightarrow 175 isotopes (¹H ⁴⁰Ca)
 - \rightarrow 1650 interactions
- Burning phases
 - \rightarrow xNe/C, shell C/Ne, core H

Main results:

Reaction	Site ^b	Temperature ^c	
$^{26}Al^t(n,p)^{26}Mg$	xNe/C; C/Ne	≈2.3; ≈1.4	
$^{25}Mg(\alpha,n)^{28}Si$	xNe/C	≈2.3	
$^{24}Mg(n,\gamma)^{25}Mg$	xNe/C; C/Ne	≈2.3; ≈1.4	
23 Na(α ,p) 26 Mg	C/Ne	≈1.4	
$^{26}\mathrm{Al}^t(n,\alpha)^{23}\mathrm{Na}$	xNe/C; C/Ne	≈2.3; ≈1.4	
27 Al(α ,p) 30 Si	xNe/C	≈2.3	
29 Si(α ,n) 32 S	xNe/C	≈2.3	
$^{26}Mg(\alpha,n)^{29}Si$	C/Ne	≈1.4	

Study of ${}^{26}AI(n,p){}^{26}Mg$ and ${}^{26}AI(n,\alpha){}^{23}Na$ reactions

²⁶Al + n reactions status

Resonances of interest:

- $S_n < E_X < S_n + 500 \text{ keV} (T_9 = 2.3)$
- s-wave neutron capture $J^{\pi} = 9/2^+$, $11/2^+$
- p-wave neutron capture $J^{\pi} = 7/2^{-}, \dots, 13/2^{-}$

Dedicated measurements:

- Time-reverse reactions
 - \rightarrow ²⁶Mg(p,n) & ²³Na(α ,n) Skelton et al. 1987
- ${}^{26}AI + n$ direct measurements $\rightarrow {}^{26}AI(n,p){}^{26}Mg$
 - Trautvetter et al. 1986
 k_BT up to 71 keV + E < 350 keV
 - Koehler et al. 1997 E_n up to 70 keV: E_R = 5.9 keV and 33.7 keV
 - $\rightarrow {}^{26}Al(n,\alpha){}^{23}Na$
 - Koehler et al. 1997
 E_n up to 10 keV: E_R = 5.9 keV
 - de Smet et al.2007
 E up to 100 keV: 6 resonances

Reaction rate: Oginni et al. 2011

Lack of spectroscopic information (E_x , $J\pi$, Γ_{tot} , Γ_p , Γ_{α} , Γ_n) above S_n

Experimental method and set-up

²⁷Al levels above neutron threshold

Deconvolution above neutron threshold:

- C contamination \rightarrow energy resolution 12 keV
- Background subtraction

Deconvolution robustness:

• Similar deconvolution at 10°

²⁷Al levels above neutron threshold

Deconvolution above neutron threshold: Deconvolution robustness: • C contamination \rightarrow energy resolution 12 keV Similar deconvolution at 10° Background subtraction $S_n < E_X < S_n + 350$ keV 300 (α,γ) (α,p) 250 (n,α) 200 counts 150 100 50 ^{0.304} Βρ [T.m.] 0.298 0.302 0.306 0.31 0.3 0.308

Comparison with known levels:

- Very good agreement with $^{23}\text{Na}(\alpha,\gamma)^{27}\text{AI}$
- Very good agreement with ${}^{26}AI(n,\alpha){}^{23}Na$
- Marginal agreement with $^{23}Na(\alpha,p)^{26}Mg$

(de Voigt et al. 1971, de Smet et al. 2007, Whitmire et al. 1974)

 \rightarrow more than 30 new resonances above S¹.

Resonance's spins?

 (α,γ) and (n,α) preferentially populate high-spins (J>7/2)

 \rightarrow new resonances probably have low-spins

S. Benamara, NdS, A. M. Laird, PRC 2014

Coincidence measurement

(Orsay – Barcelona – York set-up)

Experimental conditions:

- 3 W-type DSSSDs
 - \rightarrow 16 + 16 strips ($\Delta E \sim$ 20 keV FWHM)
- close geometry around the target \rightarrow d ~ 11-12 cm, ϵ ~ 4%
- Very low background environment
- Thick shield to reduce induced background from faraday cup @ 0 degree
- Beam intensity up to 100 nA

Event selection:

- Split-Pole proton selection
- Time of flight between FP plastic and DSSSDs
- Energy front v.s. back in DSSSDs

Coincidence spectrum:

Branching ratios

Branching ratios for first resonances above neutron threshold:

E _R (keV)	5.87	21.98	34.95	41.30
BR (%) p0	17 (4)	50 (9)	5 (2)	11 (4)
BR (%) p1	34 (5)	21 (7)	44 (5)	41 (7)

- Statistical uncertainty (15 40%)
- Isotropic emission assumption (20%)
- Background subtraction (20%)

Constrains on spin of resonance by comparing BR(p1)/BR(p0) ratio and penetrability calculations: Case of resonance at 34.95 keV de Smet et al. \rightarrow 9/2+ - 11/2+ (s-wave) Present work \rightarrow BR(p1) / BR(p0) = 8.8 (3) Penetrability ratios:

 \rightarrow P(p1) / P(p0) = 6.3 (9/2+) \rightarrow P(p1) / P(p0) = 16.4 (11/2+)

Explosive nucleosynthesis of ¹⁵N in massive stars

- Massive stars (M > 8 M_{\odot}) play a key role in the chemical and dynamical evolution of our galaxy.
- Material from these stars is brought to Earth in presolar grains embedded in meteorites.

- Orgueil meteorite, MNHN Low-Density graphite grain
- Low-Density graphite grains carry isotopic anomalies typical from massive stars.
- What is the precise origin of the material (which layer)?
- Recent measurement of spatial correlation of ¹⁵N & ¹⁸O points toward the He layer. (Groopman et al., 2012)

 Sensitivity study for ¹⁵N production in case of explosion of a 15 M_o star.

• Mainly due to uncertainty of 5 in the ${}^{18}F(n,p){}^{18}O$ rate and ${}^{18}F(n,\alpha){}^{15}N$ (based on Hauser-Feschbach calc.)

Lack of spectroscopic information in ¹⁹F nucleus above neutron threshold

15 µm

¹⁹F levels above neutron threshold

Coincidence measurement: ${}^{19}F(p,p'){}^{19}F^*(p|\alpha)$, E = 15 MeV, Θ_{sp} = 30°, 40°

Counts 0009 **S**_n < **Ex** < **S**_n + 200 keV Known ¹⁹F states $_{5000} = \theta_{lab} = 40^{\circ}$ Me< New ¹⁹F states ¹⁶O 10.356 MeV 4000 3000 2000 1000 0.288 0.29 0.292 0.298 0.3 0.294 0.296 Brho (T.m.)

Split-Pole inclusive spectrum

\mathbf{p}_{0} α_0 Mean x 3500 Mean y Std Dev x Std Dev v 3000 2500 arb 2000 Sod 1500 1000 500

• Under analysis (F. Hammache)

- Fit takes into account experimental • resolution (16 keV) and natural width when needed
- Two new states above $n+^{18}F$

Coincidence spectrum (1 W1)

Summary and perspectives

- Magnetic spectrometers (SP, Q3D) at TANDEM facilities well suited for indirect nuclear astrophysics studies:
 - \rightarrow high-energy resolution measurements
 - \rightarrow angular distribution measurements

- Efficient (~15%) silicon array coupled to Split-Pole
 - \rightarrow angular correlation measurements
 - \rightarrow spin and BR determination

- Mid-term program
 - \rightarrow ²²Na(p, γ)²³Mg reaction in classical novae (scheduled in 2 weeks)
 - \rightarrow ³⁰P(p, γ)³¹S reaction in classical novae (accepted)
 - \rightarrow ²²Ne(p, γ)²³Na reaction in classical novae (accepted)

 $\rightarrow \dots$

Collaborators

S. Benamara, F. Hammache, N. de Séréville, I. Stefan...

P. Adsley, A. M. Laird, S. Fox, J. Riley...

A. Parikh

Elniversidad de Huelva

