Onset of deformation in neutron-rich Rb isotopes from Coulomb excitation studies

C. Sotty ${ }^{1,2}$, M. Zielińska ${ }^{3,4}$, G. Georgiev ${ }^{1}$, D. Balabanski ${ }^{5}$, A. Stuchbery ${ }^{6}$, A. Blazhev ${ }^{7}$, N. Bree ${ }^{2}$,
R. Chevrier ${ }^{8}$, S. Das Gupta ${ }^{9}$, J.M. Daugas ${ }^{8}$, T. Davinson ${ }^{10}$, H. De Witte ${ }^{2}$, J. Diriken ${ }^{2}$, L. Gaffney ${ }^{2}, 11$, K. Geibel ${ }^{7}$, K. Hadyńska-Klȩk ${ }^{4}$, F. Kondev ${ }^{12}$, J. Konki ${ }^{13}$, T. Kröll ${ }^{14}$, P. Morel ${ }^{8}$, P. Napiorkowski ${ }^{4}$, J. Pakarinen ${ }^{13}$, P. Reiter ${ }^{7}$, M. Scheck ${ }^{14}$, M. Seidlitz ${ }^{7}$, B. Siebeck ${ }^{7}$, G. Simpson ${ }^{15}$, N. Warr ${ }^{7}$, F. Wenander ${ }^{13}$

${ }^{1}$ CSNSM, Orsay, France; ${ }^{2}$ KU Leuven, Belgium; ${ }^{3}$ CEA Saclay, France;
${ }^{4}$ Heavy Ion Laboratory, Warsaw, Poland; ${ }^{5}$ INRNE-BAS, Sofia, Bulgaria; ${ }^{6}$ ANU, Canberra, Australia; ${ }^{7}$ Institute for Nuclear Physics, Cologne, Germany; ${ }^{8}$ CEA/DAM, Bruyères-le-Châtel, France;
${ }^{9}$ Università di Camerino, Italy; ${ }^{10}$ University of Edinburgh, UK; ${ }^{11}$ University of Liverpool, UK;
12 Argonne National Laboratory, USA; ${ }^{13}$ ISOLDE, CERN, Geneva, Switzerland;
14 Technische Universität Darmstadt, Germany; ${ }^{15}$ LPSC, Grenoble, France;

- Motivation
- Experiments on ${ }^{97,99} \mathrm{Rb}$
- Methods and assumptions used in Coulex analysis
- Results
- Outlook
- Shape coexistence in neutron-rich Kr isotopes

Motivation: shape transition at $\mathrm{N}=60$

- dramatic change of the ground state structure observed at $\mathrm{N}=58,60$ for Rb, Sr, Y, Zr isotopes
- considerable theoretical and experimental effort in this mass region
- onset of deformation at $\mathrm{N}=60$ confirmed by 2^{+}energies and transition probabilities in even-even nuclei (Sr, Zr, Mo...)

Kr mass measurement: S. Naimi et al., Phys. Rev. Lett. 105 (2010) 032502

Rubidium isotopes beyond $\mathrm{N}=58$

- onset of deformation at $\mathrm{N}=60$ confirmed by 2^{+}energies and transition probabilities in even-even nuclei (Sr, Zr, Mo...)
- less data for odd nuclei and along southern border of the region - low fission yields make such studies more difficult

- no excited states known in ${ }^{97-99} \mathrm{Rb}$ except for $76 \mathrm{keV} 5 \mu \mathrm{~s}$ isomer in ${ }^{97} \mathrm{Rb}$ (M. Rudigier et al, PRC 87 (2013) 064317)
- ground state spins and quadrupole moments measured in laser spectroscopy (C. Thibault et al, PRC23 (1981) 2720) consistent with a structure change at $\mathrm{N}=60$

Coulomb excitation of ${ }^{93-99} \mathrm{Rb}$ at ISOLDE

gamma-ray detection array:
MINIBALL
8 triple clusters, 8% efficiency

particle detection setup:
annular DSSD detector at forward angles
detection of scattered Rb
and recoiling Ni nuclei

- deexcitation γ rays mesured in coincidence with scattered particles (Rb and Ni)
- $10^{5}-10^{6} \mathrm{pps}$ beams $\left(10^{3}\right.$ for $\left.{ }^{99} \mathrm{Rb}\right)$
- short measurement time sufficient: about 20 hours of data taking for ${ }^{97} \mathrm{Rb}$!

Results: first observation of collective states in ${ }^{97-99} \mathbf{R b}$

- statistics sufficient for gamma-gamma coincidences - level schemes established
- identification of regular rotational bands

C. Sotty, PhD thesis, Université Paris-Sud (2013)
- Second step: extraction of E2 and M1 matrix elements using GOSIA code
C. Sotty et al. Phys. Rev. Lett. 115, 172501 (2015)

Coulex analysis: ${ }^{97}$ Rb

- underdetermined problem: 20 gamma rays, 24 matrix elements (E 2 and M1), strong correlations between matrix elements \rightarrow model assumptions necessary

$$
\text { Alaga rules: }\left\langle\mathrm{KI}_{\mathrm{f}}\|\mathrm{E} 2\| \mathrm{KI}_{\mathrm{i}}\right\rangle=\sqrt{\left(2 \mathrm{I}_{\mathrm{i}}+1\right)}\left(\mathrm{I}_{\mathrm{i}}, \mathrm{~K}, 2,0 \mid \mathrm{I}_{\mathrm{f}}, \mathrm{~K}\right) \sqrt{\frac{5}{16 \pi}} \mathrm{e}_{0}
$$

\Rightarrow within rotational model E2 branching ratio depends on spins only (Q_{0} cancel out)

- Step 1: for each value of $\left\langle 7 / 2^{+}\|E 2\| 3 / 2^{+}\right\rangle$all remaining matrix elements in Rb and Ni are fitted to observed gamma-ray intensities and known spectroscopic data

- Step 2: for all other transitions a standard GOSIA analysis assuming this value of $\left\langle 7 / 2^{+}\right|\left|E 2 \| 3 / 2^{+}\right\rangle$

Results: deformation of ${ }^{97} \mathbf{R b}$

- Alaga rules assumed for each pair of I $\rightarrow \mathrm{I}-2$ / I $\rightarrow \mathrm{I}-1$ transitions:

E2 part of a mixed E2/M1 transition determined from the I \rightarrow I-2 intensity, the remaining part of $\mathrm{I} \rightarrow \mathrm{I}-1$ attributed to M1 decay

- constant Q_{0} within the band
- results consistent with Q_{sp} of the ground state measured in laser spectroscopy
- transition strengths of 60-110 W.u., β deformation ≈ 0.31

Results: M1 matrix elements in ${ }^{97}$ Rb

$$
\begin{gathered}
3 / 2^{+}[431] \\
\mathrm{K}=3 / 2, \mathrm{Q}_{0}=2.90, \mathrm{~g}_{\mathrm{R}}=0.30 \\
\left|\mathrm{~g}_{\mathrm{K}}-\mathrm{g}_{\mathrm{R}}\right|=1.410
\end{gathered}
$$

$3 / 2^{+}[431]$ configuration more probable for the ground state in ${ }^{97} \mathrm{Rb}$
Woods-Saxon potential with universal parametrisation from P. Moller, ADNDT 59 (1995) 185;
F. Kondev priv. comm.

Results: M1 matrix elements in ${ }^{97}$ Rb

$B(E 2) / B(M 1)$ ratios in ${ }^{97} \mathrm{Rb}$ consistent with positive parity
further support for the $3 / 2^{+}$[431] configuration of the ground state
C. Sotty et al. Phys. Rev. Lett. 115, 172501 (2015)

Comparison with neighbouring $\mathrm{N}=58,60$ nuclei

- Q_{0} values in ${ }^{97} \mathrm{Rb}$ consistent with those in $\mathrm{N}=60 \mathrm{Zr}$ and Sr nuclei
- visible reduction of Q_{0} for $\mathrm{N}=60{ }^{96} \mathrm{Kr}$ - similar to what is observed for $\mathrm{N}=58$ nuclei
- $Q_{s p}$ values from laser spectroscopy confirm a dramatic shape change at $N=60$ in Rb isotopes, deformation for ${ }^{97} \mathrm{Rb}$ consistent with Coulex results

Next step: ${ }^{99} \mathbf{R b}$

- strong correlations of all matrix elements like in the ${ }^{97} \mathrm{Rb}$ case and...
- very low statistics (few hundred counts in the strongest line)
- target excitation not observed
- unresolved doublet at 222 keV
- extremely underdetermined problem: 6 gamma rays, 15 matrix elements

... but matrix elements in the upper part of a strongly deformed rotational band are related to observed intensity ratios in the nucleus under study (no external normalisation required)

${ }^{99} \mathrm{Rb}$: proposed solution and test on ${ }^{97} \mathrm{Rb}$ data

- all E2 matrix elements (including Q_{s}) coupled using rotational model
- then we fit only M1 matrix elements and one Q_{0} to measured gamma-ray intensities

- tested on ${ }^{97} R b$ data, result consistent with weighted average of Q_{0} values obtained in standard analysis

${ }^{99} \mathrm{Rb}$: results

- 4 M1 matrix elements and one Q_{0} fitted to measured gamma-ray intensities in ${ }^{99} \mathrm{Rb}$

- one clear χ^{2} minimum for all observed transitions
- precision rather low due to limited statistics

Comparison with neigbouring $\mathrm{N}=58,60,62$ nuclei

- Q_{0} in $\mathrm{N}=62{ }^{99} \mathrm{Rb}$ similar to that of ${ }^{97} \mathrm{Rb}$ and $\mathrm{N}=60,62 \mathrm{Zr}$ and Sr nuclei
- large deformation appears in ${ }^{97} R b$ and remains constant (in terms of Q_{0}) with increasing Z and N

Summary and outlook

- large quadrupole deformation of ${ }^{97,99} \mathrm{Rb}$ confirmed by results of ISOLDE Coulex experiment:
- first observation of the rotational ground state bands
- measurement of transition probabilities

Short-term perspectives:

- extraction of E2 transition probabilities in ${ }^{93,95} \mathrm{Rb}$ and ${ }^{97,99} \mathrm{Sr}$ (no or few transition probabilities known)
- possible lifetime measurement in ${ }^{97} \mathrm{Rb}$ - verification of the model assumptions used in Coulex analysis:
。 change of $\left\langle 9 / 2^{+}\right||\mathrm{M} 1|\left|7 / 2^{+}\right\rangle$from 0.5 to $2 \mu_{\mathrm{N}}$ changes $9 / 2^{+}$lifetime by one order of magnitude (1 ns vs 100ps)

Long-term perspectives:

- Coulex of ${ }^{94-98} \mathrm{Kr}$?

Kr isotopes around $\mathrm{N}=60$: where we are?

M. Albers et al. Phys. Rev. Lett. 108, 062701 (2012)

- Coulex of ${ }^{96} \mathrm{Kr}$ at REX-ISOLDE (2010): $7 \cdot 10^{3} \mathrm{pps}$
- statistics not really sufficient to determine $\mathrm{Q}_{\mathrm{s}}\left(2_{1}^{+}\right)$
- at $10^{5} \mathrm{pps}$ observation of non-yrast states likely
- intensity expected at new generation ISOL facilities
- Lol for SPES: V. Modamio et al

Shape coexistence: two-state mixing

Kr: E. Bouchez et al. Phys. Rev. Lett. 90, 082502 (2003)

mixing amplitudes for ${ }^{98} \mathrm{Sr}$ (from ME): $\cos ^{2} \theta_{0}=0.82, \cos ^{2} \theta_{2}=0.99$
E. Clément et al. Phys. Rev. Lett. 108, 022701 (2016)

Shape coexistence in ${ }^{94,98} \mathrm{Kr}$: theoretical predictions

- coexistence of prolate-oblate $\left({ }^{98} \mathrm{Kr}\right)$ or oblate-triaxial shapes $\left({ }^{94} \mathrm{Kr}\right)$
- O_{2}^{+}states predicted below 1 MeV - accessible in Coulex
- smooth evolution of measured 2_{1}^{+}energies suggests mixing of $2_{1,2}^{+}$states
- measurement of 0_{2}^{+}decay will already give an idea about mixing

