Ab initio calculations of open-shell mid-mass nuclei

Collaborators: V. Somà, C. Barbieri, A. Signoracci, G. Hagen, P. Navratil, G.R Jansen

Joint LIA COLL-AGAIN, COPIGAL and POLITA workshop LNS Catania, April 26-29 2016

• Ab initio nuclear theory: context & state-of-the-art

 \circ Results in open-shell mid-mass nuclei: example of the Ca chain

 \circ Some perspectives

Ab initio (=*in medias res*) A-body problem

● Implement in A-body sector → "ab initio" nuclear A-body problem

How doese the Aich nuclear phenomenology emerge from basic interactions between the nucleons?

• Benefits: controlled extrapolations, assessment of errors, link to fundamental interactions is there a natural limitation of such a description with A?

Link to QCD via pion-full EFT = current paradigm

Landmark result of *ab initio* methods

Polynomially-scaling Ab initio methods for open-shell nuclei

- Standard expansion schemes fail when dealing with, e.g., pairing and quadrupole instabilities
 - Hea: exploit symmetry breaking, e.g. particle number to account for pairing

- Revisit basic/investigate new questions from an *ab initio* perspective
 - Emergence of magic numbers and their evolution
 Limits of stability on neutron-rich side beyond Z=8
 Mechanism for nuclear superfluidity
 Emergence and evolution of quadrupole collectivity
 Role and validation of AN forces

• Ab initio nuclear theory: context & state-of-the-art

• Results in open-shell mid-mass nuclei: example of the Ca chain

 \circ Some perspectives

Two sets of 2N+3N pion-full EFT interactions

$N^{3}LO 2N (NLR - 500MeV) + N^{2}LO 3N (LR - 400MeV) = « EM »$

 \fi SRG-evolved down to 1.88-2.0 fm⁻¹

[Entem, Machleidt 2003; Navrátil 2007; Roth et al. 2012]

 \Im N²LO 2N+3N (NLR - 450MeV) = « NNLO_{sat} »

¤ Bare

[Ekstrom *et al.* 2015]

Status of ab initio calc. vs recent exp. in Z=20 isotope chain

First 2⁺ excitation energy

- \circ Good description with EM (probably less with NNLO_{sat})
- High value on ⁴⁸Ca emerges from 3NF
- o ^{52,54}Ca as sub-shell closures (prediction for ⁵⁴Ca)

Absolute binding energies (not shown)

- Systematic overbinding with EM (AO were good)
- Corrected with NNLO_{sat}
- Trend correct requires 3NF

Two nucleon separation energies

- Good reproduction with EM and NNLO_{sat}
- 3NF significantly influences drip-line location
- N=28 magicity emerges from 3NF (and correct N=20)

Conclusions

- Emergence of magicity/3NF essential
- \circ Put χ interactions / $\chi\text{-}EFT$ strongly to the test
- \circ Need more accuracy, observables, nuclei, errors...

Charge radii

- Too low [~12% (0.4fm)] with EM (not shown)
- Corrected by NNLO_{sat} (¹⁶O input in fit)
- Calc. not fully converged

• Ab initio nuclear theory: context & state-of-the-art

 \circ Results in open-shell mid-mass nuclei: example of the Ca chain

• Some perspectives

Doubly open-shell nuclei
• All methods limited to spherical nuclei
• Break rotational SU(2) symmetry
• Access nuclei beyond semi-magic (=all)
GGF

Continuum coupling Particle continuum discretized in HO Couple HO with Berggren or Bessel basis Dripline + some applications to reactions DGF CC IMSRG GGF

Heavy nuclei

• Calculation limited by size of 3NF input file

- \circ Terabyte or petabyte files beyond A~100
- \circ Need breakthrough to reduce $\boldsymbol{memory\ load}$

DGF CC CC	IMSRG	
$GGF \square \square BCC \square \square$	IMSRG	

Heavy nuclei

• Calculation limited by size of 3NF input file

- \circ Terabyte or petabyte files beyond A~100
- \circ Need breakthrough to reduce $\boldsymbol{memory}\ \boldsymbol{load}$

DGF CC CC	IMSRG	
GGF BCC BCC	IMSRG	

Higher orders in the many-body expansion

- Current GGF limited in precision
- Develop and implement ADC(3)
- Affect gs observables, spectroscopy, pairing...

OGF CC	IMSRG
GF BCC	IMSRG

Long-term perspectives

Emergence of nuclear phenomena from nucleons and their interactions?
Binding, size, limit of existence, collectivity, superfluidity, decays...
Limits of such a description with A/in accuracy?
Modified A-body ab initio effective theory when A increases?
More effective but explicitly connected approaches?

Detailed, quantitative and systematic description of nuclei of interest