Ab initio calculations of open-shell mid-mass nuclei

Thomas DUGUET

CEA/SPhN, Saclay, France IKS, KU Leuven, Belgium NSCL, Michigan State University, USA

Collaborators: V. Somà, C. Barbieri, A. Signoracci, G. Hagen, P. Navratil, G.R Jansen

Joint LIA COLL-AGAIN, COPIGAL and POLITA workshop LNS Catania, April 26-29 2016

Outline

\circ Ab initio nuclear theory: context \& state-of-the-art

- Results in open-shell mid-mass nuclei: example of the Ca chain
- Some perspectives

Ab initio (=in medias res) A-body problem

Ab initio view of the atomic nucleus

© Made of structure-less nucleons $\left(+\Delta_{s}\right)+$ hyperons in $S \neq 0$
(-) Interacting via

Contact interactions
" \rightarrow Pion-less EFT
© Effective field theory (EFT)

- Systematic construction of $A \mathrm{~N}$ interactions $(A=2,3, \ldots)$
- Symmetries of underlying theory built in
- Coupling constants fixed by QCD (ideally) or data

Ab initio nuclear A-body problem viewpoint

O Benefits: controlled extranolations assessment five errers. link tof fundamentabinteractions

Link to QCD via pion-full EFT = current paradigm

Key features

Separation of scales: DOFs are nucleons\&pions (+ contact)
Relevant QCD information: chiral symmetry (breaking)
(1) Weinberg PC: NDA organizes Lagrangian in $\left(\mathrm{Q}_{\mathrm{low}} / \Lambda_{\chi}\right)^{v}$

Natural hierarchy $2 \mathrm{~N} \gg 3 \mathrm{~N} \gg 4 \mathrm{~N} \gg$... \gg AN interactions
(Fit LECs of BN operator on BN observables via Schrod. Eq.

Unique promises

Consistent $\pi \pi+\pi N+2 N, 3 N, 4 N \ldots$ int. + electroweak op.
(2) Systematic (improvable) + provides error estimates

A-nucleon sector: fits the standard view of A-body problem
Two-step process

1. Set up H^{V} at order v
2. Solve $H^{v}\left|\Psi_{k}^{\mathrm{A}}\right\rangle=E_{k}^{\mathrm{A}}\left|\Psi_{k}^{\mathrm{A}}\right\rangle$ to all orders

State-of-the-art of ab initio calculations in 2004

State-of-the-art of $a b$ initio calculations in 2010

O Ab initio methods for doubly closed-shell nuclei

- Since 2000's
- CC, DGF, IMSRG, $\ldots \rightarrow$ cross-benchmarks
- Polynomial scaling

Landmark result of ab initio methods

© Binding energy of ${ }^{\mathrm{A}} \mathrm{O}$

- IMSRG, IT-NCSM, DGF, CC
$-\mathrm{E}_{\max }=15 \mathrm{HO}$ shells $; \mathrm{E}_{3 \max }=14$

O Inter-nucleon interactions

- Chiral 2N $\left(\mathrm{N}^{3} \mathrm{LO} ; \Lambda_{2 \mathrm{NF}}=500 \mathrm{MeV} / \mathrm{c}\right)$
[D.R. Entem, R. Machleidt, PRC 68, 041001 (2003)]
- Chiral 3N $\left(\mathrm{N}^{2} \mathrm{LO} ; \Lambda_{3 \mathrm{NF}}=400 \mathrm{MeV} / \mathrm{c}\right)$
[P. Navratil, FBS 41, 117 (2007)]
- SRG evolved down to $\lambda=1.9 \mathrm{fm}^{-1}$
[S.K. Bogner et al., PPNP65, 94 (2010)]

O A-body methods

- Excellent cross benchmark
- Converging expansions to $\sim 2 \%$
- Various systematic errors $\mathbf{\sim 2 \%}$

Omitted induced BN forces for $\mathrm{B}>3$
Basis truncations: SRG, 3NF, NO2B

Polynomially-scaling Ab initio methods for open-shell nuclei

© Standard expansion schemes fail when dealing with, e.g., pairing and quadrupole instabilities
${ }^{\prime \prime} \rightarrow$ Idea: exploit symmetry breaking, e.g. particle number to account for pairing

$$
\begin{gathered}
H\left|\Psi_{k}^{\mathrm{A}}\right\rangle=E_{k}^{\mathrm{A}}\left|\Psi_{k}^{\mathrm{A}}\right\rangle \\
\left|\Psi_{0}^{\mathrm{A}}\right\rangle=\Omega_{0}|\Phi\rangle
\end{gathered}
$$

where both Ω_{0} and $|\Phi\rangle$-eak symmetries

$$
E_{0}^{\mathrm{A}}=\frac{\langle\Phi| H \Omega_{0}|\Phi\rangle}{\langle\Phi| \Omega_{0}|\Phi\rangle}
$$

O Gorkov self-consistent Green functions (GGF)
[Somà, Duguet, Barbieri 2011]
© Multi-reference IMSRG
[Hergert et al. 2013]
O Bogoliubov coupled-cluster (BCC)
[Signoracci et al. 2015]
© Symmetry-restored BCC
[Duguet 2015; Duguet, Signoracci 2016]
© Revisit basic/investigate new questions from an $\boldsymbol{a b}$ initio perspective

- Emergence of magic numbers and their evolution
- Limits of stability on neutron-rich side beyond $Z=8$
- Mechanism for nuclear superfluidity
- Emergence and evolution of quadrupole collectivity
- Role and validation of $A \mathrm{~N}$ forces

State-of-the-art of $a b$ initio calculations in 2010

O Ab initio methods for doubly closed-shell nuclei

- Since 2000's
- CC, DGF, IMSRG, $\ldots \rightarrow$ cross-benchmarks
- Polynomial scaling

State-of-the-art of $a b$ initio calculations in 2016

O Ab initio methods for doubly closed-shell nuclei
o Since 2000's

- CC, DGF, IMSRG, $\ldots \rightarrow$ cross-benchmarks
- Polynomial scaling

O Ab initio methods for open-shell nuclei

- Since 2010's
- GGF, MR-IMSRG, BCC
- Polynomial scaling

State-of-the-art of $a b$ initio calculations in 2016

O Ab initio methods for doubly closed-shell nuclei
o Since 2000's

- CC, DGF, IMSRG, $\ldots \rightarrow$ cross-benchmarks
- Polynomial scaling

O Ab initio methods for open-shell nuclei

- Since 2010's
- GGF, MR-IMSRG, BCC
- Polynomial scaling

Outline

$\circ \mathrm{Ab}$ initio nuclear theory: context \& state-of-the-art
\bigcirc Results in open-shell mid-mass nuclei: example of the Ca chain

- Some perspectives

Two sets of $2 \mathrm{~N}+3 \mathrm{~N}$ pion-full EFT interactions

($\mathbf{N}^{\mathbf{3}} \mathbf{L O}$ 2N $(\mathrm{NLR}-500 \mathrm{MeV})+\mathbf{N}^{2} \mathbf{L O} \mathbf{3 N}(\mathrm{LR}-400 \mathrm{MeV})=<\mathbf{E M}$ »
a SRG-evolved down to $1.88-2.0 \mathrm{fm}^{-1}$
[Entem, Machleidt 2003; Navrátil 2007; Roth et al. 2012]

EM

Sequential optimization of 2 N and 3 N
LECs fitted on $\mathbf{A = 2 , 3 , 4}$
Conventional
(6) $\mathbf{N}^{2} \mathbf{L O} \mathbf{2 N}+\mathbf{3 N}(\mathrm{NLR}-450 \mathrm{MeV})=$ « $\mathbf{N N L O}_{\text {sat }}$ »
a Bare

$\mathbf{N N L O}_{\text {sat }}$

Simultaneous optimization of 2 N and 3 N
LECs fitted on $\mathbf{A} \leq \mathbf{2 5}$
Unconventional
[Ekstrom et al. 2015]

Status of ab initio calc. vs recent exp. in $Z=20$ isotope chain

First 2^{+}excitation energy

- Good description with EM (probably less with $\mathrm{NNLO}_{\text {sat }}$)
- High value on ${ }^{48} \mathrm{Ca}$ emerges from 3NF
- ${ }^{52,54} \mathrm{Ca}$ as sub-shell closures (prediction for ${ }^{54} \mathrm{Ca}$)

Absolute binding energies (not shown)

- Systematic overbinding with EM (${ }^{\text {A O }}$ were good)
- Corrected with NNLO $_{\text {sat }}$
- Trend correct requires 3NF

Two nucleon separation energies

- Good reproduction with EM and $\mathrm{NNLO}_{\text {sat }}$
- 3NF significantly influences drip-line location
- $\mathrm{N}=28$ magicity emerges from 3NF (and correct $\mathrm{N}=20$)

Charge radii

- Too low [$\mathbf{1 2 \%}$ ($\mathbf{0 . 4 f m}$)] with EM (not shown)
- Corrected by NNLO sat $\left({ }^{16} \mathrm{O}\right.$ input in fit)
- Calc. not fully converged

Conclusions

- Emergence of magicity/3NF essential
- Put χ interactions / χ-EFT strongly to the test
- Need more accuracy, observables, nuclei, errors...

Outline

\circ Ab initio nuclear theory: context \& state-of-the-art

- Results in open-shell mid-mass nuclei: example of the Ca chain
- Some perspectives

Extensions of polynomially scaling $a b$ initio methods

Doubly open-shell nuclei

- All methods limited to spherical nuclei
- Break rotational $\operatorname{SU}(2)$ symmetry
- Access nuclei beyond semi-magic (=all)

GGF $\square \square \square$ BCC $\square \square \square$ IMSRG $\square \square \square$

Extensions of polynomially scaling $a b$ initio methods

Extensions of polynomially scaling ab initio methods

\rightarrow Doubly open-shell nuclei

Extensions of polynomially scaling ab initio methods

Doubly open-shell nuclei

- All methods limited to spherical nuclei
- Break rotational $\operatorname{SU}(2)$ symmetry
- Access nuclei beyond semi-magic (=all)

GGF $\square \square \square$ BCC $\square \square \square$ IMSRG $\square \square \square$

Continuum coupling

- Particle continuum discretized in HO
- Couple HO with Berggren or Bessel basis
- Dripline + some applications to reactions
 GGF $\square \square \square$ BCC $\square \square \square$ IMSRG

Extensions of polynomially scaling ab initio methods

\rightarrow Doubly open-shell nuclei

Extensions of polynomially scaling ab initio methods

\rightarrow Doubly open-shell nuclei

Extensions of polynomially scaling ab initio methods

Doubly open-shell nuclei

- All methods limited to spherical nuclei
- Break rotational $\operatorname{SU}(2)$ symmetry
- Access nuclei beyond semi-magic (=all) GGF $\square \square \square$ BCC $\square \square \square$ IMSRG $\square \square \square$

Continuum coupling

- Particle continuum discretized in HO
- Couple HO with Berggren or Bessel basis
- Dripline + some applications to reactions DGF $\square \square \square$ CC $\square \square \square$ IMSRG $\square \square \square$ GGF $\square \square \square$ BCC $\square \square \square$ IMSRG $\square \square \square$

Heavy nuclei

- Calculation limited by size of 3NF input file
- Terabyte or petabyte files beyond A~100
- Need breakthrough to reduce memory load DGF $\square \square \square$ CC $\square \square \square$ IMSRG $\square \square \square$ GGF $\square \square \square$ BCC $\square \square \square$ IMSRG $\square \square \square$

Extensions of polynomially scaling ab initio methods

\rightarrow Doubly open-shell nuclei

Extensions of polynomially scaling $a b$ initio methods

\rightarrow Handle of 3-body matrix elements
\rightarrow Doubly open-shell nuclei

Extensions of polynomially scaling ab initio methods

Doubly open-shell nuclei

- All methods limited to spherical nuclei
- Break rotational $\operatorname{SU}(2)$ symmetry
- Access nuclei beyond semi-magic (=all) GGF $\square \square \square$ BCC $\square \square \square$ IMSRG $\square \square \square$

Heavy nuclei

- Calculation limited by size of 3NF input file
- Terabyte or petabyte files beyond A~100
- Need breakthrough to reduce memory load
\square CC $\square \square \square$ IMSRG $\square \square \square$ GGF $\square \square \square$ BCC $\square \square \square$ IMSRG $\square \square \square)$

Continuum coupling

- Particle continuum discretized in HO
- Couple HO with Berggren or Bessel basis
- Dripline + some applications to reactions

GGF всс $\square \square \square$ IMSRG $\square \square \square$

Higher orders in the many-body expansion

- Current GGF limited in precision
- Develop and implement $\operatorname{ADC}(3)$
- Affect gs observables, spectroscopy, pairing...
 GGF $\square \square \square$ BCC $\square \square \square$

IMSRG $\square \square \square$

Extensions of polynomially scaling $a b$ initio methods

\rightarrow Handle of 3-body matrix elements
\rightarrow Doubly open-shell nuclei

Extensions of polynomially scaling $a b$ initio methods

\rightarrow Handle of 3-body matrix elements
\rightarrow Doubly open-shell nuclei

Long-term perspectives

Emergence of nuclear phenomena from nucleons and their interactions?

- Binding, size, limit of existence, collectivity, superfluidity, decays...
- Limits of such a description with A/in accuracy?
- Modified A-body ab initio effective theory when A increases?
- More effective but explicitly connected approaches?

Detailed, quantitative and systematic description of nuclei of interest

