

Clustering effects in reactions with light even-even N=Z nuclei. From the Hoyle state to cluster emission in ²⁴Mg.

L. Morelli¹

NUCL-EX Collaboration

¹ University and INFN, Bologna, Italy

Joint LIA COLL-AGAIN, COPIGAL, and POLITA Workshop (French-Italian-Polish Collaborations)

> 26-29 April 2016 INFN-Laboratori Nazionali del Sud, Catania, Italy

Outline

□Scientific Motivation:

- ✓ Fusion-evaporation reaction.
- ✓ Monte Carlo Hauser-Feshbach Code.
- \checkmark Clustering.
- ✓ Hoyle state.

The experimental set-up @ LNL-INFN

The ${}^{12}C+{}^{12}C$ and ${}^{14}N+{}^{10}B$ experiments:

- Fusion Evaporation Analisys.
- Hoyle state in central and periferal collision.

□Conclusions and perspectives

Fusion-Evaporation Reactions

- The statistical theory of compound nucleus decay
- Above the thresholds for particle decay, level densities are only accessible in evaporation reactions through the theory of compound nucleus decay,
- mainly inclusive experiments have been used up to now to constrain this fundamental quantity
- ➢ few studies exist concerning the evaporation of light nuclei in the mass region A~20

EXP: highly exclusive detection NUCL-EX collaboration campaign: STATistical properties of LIGHT nuclei from Fus-Evap.

- Iow multiplicity evts. & high detection coverage
- ✤ high energy and angular resolution
- ✤ complete evt. Reconstruction
- global control on the decay mechanism
 GARFIELD+RCo @ LNL

TH: decay codes constrained to available data

Compound Nucleus formation and decay
Level Density for A ~ 20, e* ~ 3 A. MeV

AMD calculations for ¹²C+¹²C Monte Carlo Hauser-Feshbach

G. Baiocco PhD thesis <u>http://amsdottorato.cib.unibo.it/4295/</u> G. Baiocco et al 2013 Phys. Rev. C **87** 054614.

Monte Carlo Hauser-Feshbach HF

Systematics of LD parameters D.Bucurescu, PRC 72, 044311 (2005) Back-Shifted Fermi Gas with a(E) fitted nuclei between 18F and 251Cf ;

G. Baiocco PhD thesis <u>http://amsdottorato.cib.unibo.it/4295/</u> G. Baiocco et al 2013 Phys. Rev. C **87** 054614.

$$a_{\infty} = \frac{A}{14.6} \left(1 + \frac{3.114}{A^{1/3}} + \frac{5.626}{A^{2/3}} \right)$$

J.Toke, Nucl. Phys. A 372 141 (1981)

- rapidity of the increase as the only model free parameter
- GEMINI++ as a reference: http://www.chemistry.wustl.edu/~rc/gemini++/
- R. J. Charity, Phys. Rev. C 82 014610 (2010)

Clustering

- Cluster structures appear mainly at excitation energies close to the thresholds for nucleus decomposition into clusters;
- Evidence for cluster structures comes from decay widths and branching ratios
- Preferential decay to α-structures in daughter nuclei
- Molecular resonances at higher excitation energy.
- T. Ichikawa and W. Von Oertzen, Phys. Rev. C 83, 061301 (2011)

160

14.44

00

-0.090

7.27

 which cluster structures and at which E* can be found varying the N/Z in a given isotopic chain?

Hoyle state

The theory of stellar evolution:

Triple-*α* **reaction** (Bethe, Phys. Rev. 55(1939)434)

$$3\alpha \to {}^{\scriptscriptstyle 12}C + \gamma$$

Two-step process (E.Salpeter,Astrophys.J. 115(1952)326) (non-resonant)

In 1953, Fred Hoyle predicted the third α could be captured through the resonance level in¹²C. (F.Hoyle, Astrophys.J.Suppl. 1(1954)121)

⁸Be + $\alpha \rightarrow {}^{12}C^* \rightarrow {}^{12}C + \gamma$ (resonant reaction)

The 7.65MeV 0⁺state in ¹C was found in β-decay of ¹B C.W.Cook, W.A. Fowler, C.C. Lauritsen, and T. Lauritsen, Phys.Rev.107(1957)508

Hoyle state and α cluster model

 12 C, 7.65 MeV 0₂⁺ = Hoyle state

Difficult to explain the structure by the shell model

3a cluster structure (a cluster model)

Linear chain structure (Morinaga, Phys.Rev.101(1956)254)

Loosely coupled 3α clusters (gas-like) (3α OCM: Horiuchi,PTP51(1975)1266) (3αGCM: Uegaki *et al*,PTP57(1977)1262) (3αRGM: Kamimura,NPA351(1981)456)

> **3α-clusters condensate in the lowest S-orbit** (Tohsaki *et al*, PRL87(2001)192501)

S-orbit

Experimental set-up @ LNL-INFN

European Physical Journal A

GARFIELD + RCo digital upgrade..... By M. Bruno at al. Eur. Phys. J. A (2013) 49: 128 µSGC + CsI(TI), 180 CsI detection of LCP and fragments:

- ✓ low identification thresholds (0.8–1MeV/u)
- ✓ angular coverage 30°<θ_{lab}<150°
 24 azimuthal sector
- ✓ Z identication, A identication for $1 \le Z \le 3$
- IC+Si+CsI(TI), 64 telescopes
- ✓ detection of ER, low E thresholds
- ✓ high granularity and θ-resolution:
 0.8° for 5°<θ_{lab}<17°
- ✓ energy resolution of Si strips and CsI(TI) given by 0.3% and 2-3%

Event selection

Fusion Evaporation Analisys: ${}^{12}C + {}^{12}C \exp (@95 \text{ MeV})$

• data — HFI calculation

 $HF\ell$ calculation for ²⁴Mg (E = 62 MeV) decay

- \succ good reproduction of global variables (Y(Z), multiplicities...)
- energy spectra and angular distributions of protons and alpha particles in coincidence with a residue
- biggest discrepancy for α's in coincidence with Z=8 fragments

> Differences in the relative population of the different regions.

Fusion Evaporation Analisys: ¹²C + ¹²C && ¹⁴N + ¹⁰B

•

$$Q_{kin} = E_{kin} - E_{beam} = \sum_{i=1}^{N} E_i - E_{beam}$$

C + 3α + xn

 $F + \alpha + p + xn$

Common pattern for the Qkin-value

Channels with maximum α multiplicity

- Difference in the relative
 Q>/< population
- Entrance channel effects confirmed

-30

-20

Q_{kin} MeV

for each residue

Fusion Evaporation Analisys: ¹²C + ¹²C && ¹⁴N + ¹⁰B

N+B reaction C+C reaction

 BR_e (N+B) \mathbf{Z}_{res} $BR_t (N+B)$ BR_e (C+C) BR_t (C+C) channel experimental branching ratio 96%77%98%78%6 $C+3\alpha + xn$ excess towards α emission 56%15%63%15%8 $O+2\alpha + xn$ 3%47%3%26%10 $Ne+\alpha + xn$ ¹²C + ¹²C $^{14}N + ^{10}B$ R_{clus} $R_{clus}(Z) = \frac{Y_{exp}(Z; n_Z \alpha)}{Y_{erp}(Z)} - \frac{Y_{HF\ell}(Z; n_Z \alpha)}{Y_{HF\ell}(Z)} \quad \overset{\mathfrak{g}}{\frown}_{\mathbf{0.4}}$ 0.4 $Y(Z; n_{z}\alpha)$ coincidence yields 0.2 0.2 Y(Z) inclusive yields $n_7 \rightarrow maximum \alpha$ multiplicity associated to the residue of charge Z10 10 5 6 8 9 6 8 9 Z_{res}

✓ channels with Carbon, Oxygen and Neon residues show a preferential α decay. ✓ residual α structure correlations in the excited ²⁴Mg or in its daughter nucleus.

12C* -> Hoyle State

First proposed by Fred Hoyle in 1953 to explain the abundance of carbon in the universe.

- > Later found experimentally at the energy which Hoyle had predicted.
- Cannot be explained by the shell model.
- \succ Formed through the 'triple- α ' process and thought to have a clustered structure.

Total Energy Spectrum

$$E_{tot} = \sum_{i=1}^{3} E_{\alpha i} + Erec = Ebeam + Q$$
 (Q = -7.272 MeV)

¹²C Excitation Energy Spectrum

$$E_{12C}^{*} = \sum_{i=1}^{3} E_{\alpha_i} - \frac{P^2}{2MC} + Eth$$

Hoyle State -> decay mechanism

Hoyle State -> decay mechanism

Possible direct decay (DD)

- DDE direct decay with equal energies.
- DDL direct decay in linear chain.
- DDφ direct decay with uniform population of the phase space

radial projection of the Dalitz plot $(3\rho)^2 = x_d^2 + y_d^2$

- data are very well reproduced by HF¹ calculations
- DDE, DDL and DDφ give bumps at the extremes of the distribution.
- Fit performed on the 3ρ variable, when HF^ℓ, DDE, 10⁻³ DDL and DDΦ are included.
- > Total DD contribution 1.1 \pm 0.4% with a 95% of C.L.

¹²**C** + ¹²**C** -> ²⁴Mg-> $\underline{6 \alpha}$ decay channel: the Hoyle state properties

Conclusions:

- The selected sample is compatible with the expected behavior of a complete fusion-evaporation reaction, with the exception of specific channels corresponding to the emission of multiple α particles in coincidence with Oxygen, Carbon and Neon residue.
- Persistence of anomalous Branching Ratio for alpha decay in the fused hot ²⁴Mg in ¹⁴N+¹⁰B reaction.
- The ensemble of these observations tends to indicate the persistence of cluster structures for ²⁴Mg and/or its daughter nucleus ²⁰Ne.
- The decay of the 7.65 MeV ¹²C Hoyle state, in peripheral and central reactions, give no indications of deviations from the sequential decay mechanisms.

...thank you for your attention!

L. Morelli, G. Baiocco, F. Gulminelli*, M. Bruno, M. D'Agostino, S. Barlini, M. Bini, G. Casini, M. Cinausero, M. Degerlier, D. Fabris, N. Gelli, F. Gramegna, T. Marchi, A. Olmi, G. Pasquali, S. Piantelli, S. Valdré

(NUCL-EX collaboration)
*(LPC Caen France)

