

ATS the Active Target for SPES

T. Marchi, IKS-KU Leuven

Outline

- Active Target concept
- Let's do it! Active Targets around the World
 - ACTAR TPC and SpecMAT
- ATS: An Active Target for SPES
- The MagicTin project
 - Motivation
 - The ideal setup
 - In preparation for RiBs
 - Timeline and deliverables

KU LEUVEN

Beyond MagicTin, physics opportunities for ATS

Active Target concept

- o Gas medium is both target and detection gas
- o Segmented detection plane
- Drift times recorded + charge deposition on segments (works as a **TPC**)
- o Auxiliary detectors on the sides of the chamber

Advantages:

- High efficiency and low detection thresholds
- Wide angular coverage
- Interaction Vertex Reconstruction

Measure many reactions AND beam energies at the same time

Active Targets around the World

G.F. Grinyer, J. Pancin, T. Roger, EURISOL meeting 2014

Recent review about Active Target detectors:

S. Beceiro-Novo, T.Ahn, D. Bazin, W. Mittig, Prog. in Part. & Nucl. Physics (2015) 124-165,

Active Target and TPC – ACTAR TPC

European Research Council Established by the European Commission

Parameter	Value	Depends upon	
Dynamic range	10 ³	 amplification technology detector geometry electronics auxiliary detectors 	
Number of tracks	all tracks detected independently	 segmentation using pads electronics 	
Spatial resolution	< 2 mm	 amplification technology pad size and shape number of channels auxiliary detectors 	
Maximum beam intensity	10 ⁶ pps	 drift velocity operating conditions (gas type or mixture) detector size electronics 	
Timing resolution	20 ns	 drift velocity electronics 	
Energy resolution (signal amplitude)	2%	 spatial resolution operating conditions amplification technology 	
Efficiency	> 90%	 dynamic range detector geometry type of event 	
Counting rate for accepted events	1 kHz	 electronics pad-to-electronics topology 	
Minimum half life decay events	$\approx 10 \ \mu s$	- electronics	
Portability		 detector design electronics 	

[ACTAR TPC CDR]

Physics programs:

- One and two nucleon transfer reactions
- Rare and exotic nuclear decay (2p, β2p, ...)
- Inelastic scattering and giant resonances
- Resonant scattering and astrophysics
- Transfer-induced fission, ... and more!

ACTAR TPC: Design

- Drift Region
 - **2** geometries:
 - ✓ square ~ 25x25 cm
 - rectangular ~ 12.25x25 cm (decay studies, see talk by B. Blank on 2p radioactivity)
 - Electric field uniformity
- Amplification Region
 - <u>MICROMEGAS*</u>, GEM amplifiers
 - Fast timing, robust, cost effective
- Segmented pad plane
 - Very high-density: 2x2 mm² (= 25 channels/cm²)
 - Total of 16384 electronics channels (GET system)
 - Fully digitized waveforms and times for every pad
- <u>Auxiliary Detectors</u>
 - Telescopes for escaping particles (Si+Si or Si+CsI)
 - LaBr₃ or HPGe for γ rays (SpecMAT ERC R.Raabe)

KU LEUVEN

Established by the European Commission

ACTAR TPC Demonstrator chamber

Demonstrator runs with Bacchus Spectrometer at IPN Orsay, June/July 2015

Figure and photos from D. Suzuki

ACTAR TPC Demonstrator chamber

Attenuation factor

Figure and photos from D. Suzuki

IPNO 2015 : Goals

Physics : α clustering in light nuclei (D.Suzuki)

- Excitation of Hoyle states in ¹²C
 - ${}^{12}C$ beam : inelastic scattering (${}^{12}C+\alpha$)
- Structure of excited states in ¹⁰B
 - ⁶Li beam : resonant alpha scattering ($^{6}Li+\alpha$)

• Detector : Ideal performance test

- Elastic scattering and transfer channels well known
- Particle ID/resolution: protons to ¹²C
- Many-body final states identify all 4 α particles?

Electronics : A relatively complex setup

- 256 strips DSSD (0°) + 12 Si detectors (sides)
 - Trigger with multiplicity = 1 (in GET)
- 2048 channels for the pads (triggered by the Si)

Are providing important feedback for the final design of ACTAR TPC and for the validation of ACTARSim code (GEANT4 simulation)

ACTAR TPC @ IPNO

¹²C on $\text{He:C}_4\text{H}_{10}$

• 2-particle event

KU LEUVEN

Courtesy of G.F. Grinyer

 $^{12}C \text{ on } \text{He:C}_{4}\text{H}_{10}$

• 4-particle event

Courtesy of G.F. Grinyer

KU LEUVEN

SpecMAT

High channel numbers

- 2048 ACTAR TPC Demonstrator, based at GANIL, Caen
- 10 024 ATTPC Detector at NSCL, Michigan
- ~ the same for SpecMAT
- 16 284 ACTAR TPC Detector

Concept electronics – ACTAR TPC All 16284 ch. fit in these 2 racks

Point-to-point connections could lead to unpleasantness..

Work of P. Gangnant

An Active Target for SPES- β

LNL detector's portfolio

Experimental area for an active target at SPES

Shell evolution and collectivity in Tin isotopes

FIG. 1. Single-neutron states expected to be populated in the present one-neutron transfer study of ^{131,133}Sn and ²⁰⁹Pb.

Shell evolution and collectivity in Tin isotopes

KU LEUVEN

150 BaF₂ (~30% eff)

[R.L. Varner et al, EPJA 25 (2005) 391]

[He Wang et al, PTEP 023D02 (2014)]

^{132,134}Sn Coulex @

HRIBF

9000 ions/s

⁹Be(¹³⁷Sb,¹³⁶Sn) @ RIKEN DALI2 (186 Nal(TI)~22% eff)

Fig.1 Analogy between f7/2 and p3/2 evolution of binding energies in the known Ca isotopes to what could be expected for the Sn isotopes approaching N=90. Figure adapted from¹³.

Getting more details - transfer reactions MagicTin*

- **Probe single particle properties determining** spectroscopic factors
- Extend towards more neutron-rich region (+1n)

[K.L. Jones et al, Nature 465 (2010) 454]

Evidences of ¹³²Sn double magicity Resolution ~ 300 keV

[J.M. Allmond et al, PRL 112, 172701 (2014)]

High resolution spectroscopy for ¹³¹Sn ¹³³Sn using (⁹Be, ⁸Be) transfer reactions

Possible setup and beams

Expected beam intensities @ 10 AMeV					
	SPES 1 st day	SPES full power			
	(5 µA p beam)	(200 µA p beam)			
¹³² Sn	7.8 10 ⁵	3.1 10 ⁷			
¹³³ Sn	7.0 10 ⁴	2.8 10 ⁶			
¹³⁴ Sn	1.2 10 ⁴	4.9 10 ⁵			
¹³⁵ Sn	1.6 10²	6.2 10 ³			
¹³⁶ Sn	-	0.9 10 ²			

gas volume

electric

Fig. 5: Reconstructed kinematics plot for the different excited states populated in ¹³³Sn for protons stopped in the gas at a pressure of 400 mbar. Note that the majority of protons populating the ground state escape the gas and the resolution is thus slightly degraded.

Stopped in gas: ~ 110 keV FWHM res

Fig. 6: Reconstructed kinematics plot for the different excited states populated in ¹³³Sn for protons stopped in the Si detectors (open circles) and stopped in the gas (closed circles).

Gas-Si (∆E-E): ~ 90 keV FWHM res

KU LEUVEN

[D..Perez-Loureiro and G.F.Grinyer, ACTARsim Report (2013)]

ACTAR 35 60 40 -30 -20 -10 -20 -20 -10 -20 -10

ACTAR + Si wall

Fig. 4: Sample digitized trace for a $^{152}\text{Sn}(d,p)$ reaction with $2x2\text{mm}^2$ sized pads. The red line corresponds to the fitted trajectory used for determining the range of the proton.

¹³²Sn(d,p)¹³³Sn @ 5 AMeV 400 mbar D₂

Improving resolution with gamma-ray detectors

- γ -rays in PARIS-like detectors from population of 854, 1363, 2005 keV states in ¹³³Sn
- Statistics corresponding to 2 days of beam time at 10³ pps (total cross section 10 mb, photopeak eff 17%)

Issue: might reduce global efficiency

Fig. 4. $M_{\rm H}$ (-) and $M_{\rm h}$ (a) from QRPA calculations with the Gogy D1M interaction compared to experimental $M_{\rm p}$ ((*): REKR [4], e): NSL [9:13], a): GSI Doppler Shit: Attenuation Method [34], Δ : GSI Coulomb excitation [6.10-12], e): ISOLDE [7,8], G): NNDC [28]), Top: 2_1^+ . Bottom: 3_1^- . Experimental $M_{\rm R}$ values are taken from the literature [22].

Getting ready for RIBs: MT implementation MagicTin*

Benchmark: ¹³⁶Xe(d,p)¹³⁷Xe - inv kinem

B.P. Kay et al, PRC 84 0243325 (2011) HELIOS @ ANL

Does kinematics help?

¹³⁶Xe(d,p)¹³⁷Xe - inv kinem

 136 Xe(d, 3 He) 135 Ie - inv kinem

Or not?

¹³⁶Xe(d,p)¹³⁷Xe - inv kinem

¹³⁶Xe(d,³He)¹³⁵Ie - inv kinem

Tradeoff: Range vs good tracking

Using heavy ion beams - simulations

Fig. 4: Sample digitized trace for a ¹³²Sn(d,p) reaction with 2x2mm² sized pads. The red line corresponds to the fitted trajectory used for determining the range of the proton.

Beam Shielding

Fig. 4: Sample digitized trace for a ¹⁵²Sn(d,p) reaction with 2x2mm² sized pads. The red line corresponds to the fitted trajectory used for determining the range of the proton.

Tracking

Fig. 4: Sample digitized trace for a ¹⁵²Sn(d,p) reaction with 2x2mm² sized pads. The red line corresponds to the fitted trajectory used for determining the range of the proton.

Tracking

Fig. 4: Sample digitized trace for a ¹⁵²Sn(d,p) reaction with 2x2mm² sized pads. The red line corresponds to the fitted trajectory used for determining the range of the proton.

2 or more particle events

Looking for a smart solution

\$	GECO - Configuration files editor for Detectors			×
Files Tools Options Help				
Edit Lookup table file Ctrl+T				
ac Load a user define XML parameters file Ctrl+P	SAVE Config file SAVE as new Config file PDF current parameter			Return to View Mode
Open <u>c</u> urrent config file with cconfiged Ctrl+C				
Configuration file			Channels 🔊 Agets 🔤 Asad	s CoBos
/Differentes_config/4_CoBos_TPC_DSSD_MAYA/4_CoBo.xcfg 睯 🜊 Last save: 15/09/2015 10:55:17	Scope	_		
- Lealous table file	Detector view	Ý	Gain	
	○ Electronic view 0 10 20 30 40 50 60 70 80 9	0 100	TriggerInhibition	
tes_config/4_CoBos_TPC_DSSD_MAYA/NewLookupTable.dat			inhibit_channel	
			inhibit_trigger	
		Ŧ	none	
		ň		
		Z	0	
		AYA	▶ Reading	
			zeroSuppressionThreshole	t i
		SSC		
		D		
Select all Unselect all	Current selection:			
	Global selection: 0 pads selected Last point: Col=0, Row=0			
	0 pads selected			

Beyond MagicTin: physics opportunities with an active target at SPES

KU LEUVEN

[F. Gramegna, ACTAR TPC Kickoff meeting 2013]

Beyond MagicTin: physics opportunities with an active target at SPES

Two letters of intent for SPES endorsed by the SAC:

B. Fernandez Dominguez et al, Direct Reactions with exotic nuclei in the r-process using an active target R. Raabe, T. Marchi et al, Shell Structure in the vicinity of ¹³²Sn with an active target

ENSAR2 Network Activity: Gas Detection Systems

ENSAP

W.P. Leader: G.F. Grynier (GANIL) Deputy Leader: F. Gramegna (LNL)

Task 1: ... gather together the GDS community ...

4 topical meetings

Task 2: GDS in strong and non-uniform magnetic fields

Task 3: Novel detection systems for high-intensity and heavy beams

Task 4: Rare gas target handling and recycling systems

Task 5: Auxiliary detectors

