COHERENT RADIATION CHARACTERISTICS OF **MICROBUNCHED POSITRON BUNCH FORMED IN** CU

Hayk Gevorgyan | Lekdar Gevorgian

ASSUME THAT:

- LCLS positron bunch
- Modulated (microbunched) in SASE FEL (process)
- Falls in Crystalline Undulator (CU)
- At a zero angle (to the planes of monocrystal).

THE PROBLEM:

THE GENERATION OF THE COHERENT UNDULATOR RADIATION

- At a resonant frequency, equal to
- Minimal possible frequency formed in CU,
- Due to initial modulation of bunch.

WHY MODULATED BUNCH ? WHY CU AND CU RADIATION ? **WHY POSITRON BUNCH** ? **WHY RADIATION** AT A **RESONANT FREQUENCY WHY EQUAL TO** MINIMAL **POSSIBLE FREQUENCY** ?

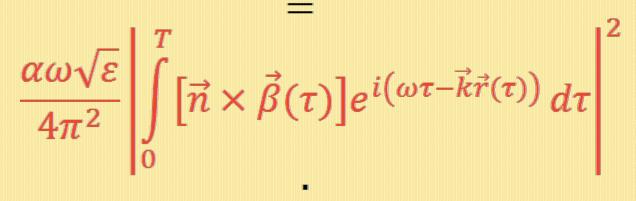
WE WILL TOUCH THIS QUESTIONS IN THE END OF PRESENTATION,

WHEN WE WILL KNOW THE ESSENCE OF THE PRESENTATION!

BUNCH RADIATION

• Photon Number Frequency-Angular Average Distribution is:

$$N_{tot}(\omega,\vartheta) = N_{sp}(\omega,\vartheta) + N_{coh}(\omega,\vartheta)$$


 $\begin{array}{ccc} N_{s}(\omega,\vartheta) & \longleftarrow & \circ & \text{For any source of radiation} \\ F & \longleftarrow & \circ & \text{For freeform distribution of bunch} \end{array}$

 $N_{sp}(\omega,\vartheta) = N_s(\omega,\vartheta) \cdot N_b(1-F)$

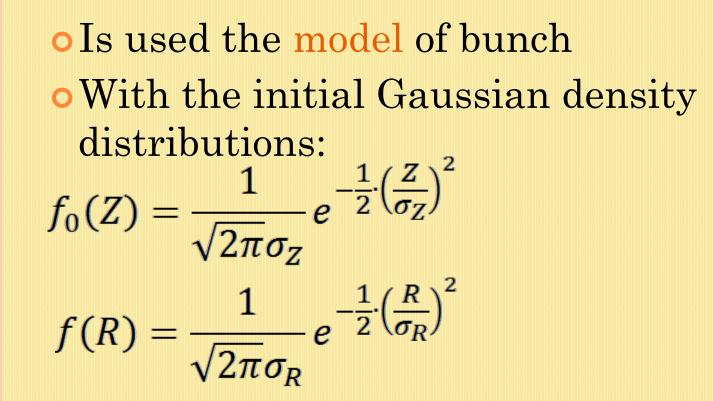
 $N_{coh}(\omega,\vartheta) = N_s(\omega,\vartheta) \cdot N_b^2 F$

• Where N_b is the number of bunch particles radiated

THE SINGLE PARTICLE RADIATION PART $N_{tot}(\omega, \vartheta) = \langle \frac{d^2 N_{ph}}{d\omega d0} \rangle$

$$\left\langle \left| \sum_{j=1}^{N_b} e^{-\frac{\omega}{v_{\parallel}} z_j} e^{-ik_x x_j} e^{-ik_y y_j} \right|^2 \right\rangle = N_c(\omega, \vartheta) \cdot \left(N_b^2 F + N_b (1 - F) \right)$$

FORM FACTOR,
LONGITUDINAL AND TRANSVERSE
FORM FACTORS OF BUNCH


$$F = F_Z(\omega) \cdot F_R(\omega, \vartheta)$$

 $F_Z(\omega) = |\langle e^{(-ik_{\parallel}Z)} \rangle|^2 = \left|\int f(Z) e^{(-ik_{\parallel}Z)} dZ\right|^2$
 $F_R(\omega) = |\langle e^{(-ik_{\parallel}R)} \rangle|^2 = \left|\int f(R) e^{(-ik_{\perp}R)} dR\right|^2$

- There are probability density functions (bunch particle density distribution functions)
- And probability functions (form factors of bunch)
- On longitudinal Z (movement direction) and transverse R directions.

STEPS OF SOLVING THE PROBLEMS OF COHERENT RADIATION

• Is necessary the availability of radiation (at least a single particle radiation): $N_s \neq 0$ or $N_{sp} \neq 0$ • Is provided the coherence condition: $N_h F \gg 1$ or $F \to 1$ \longleftarrow $N_h \gg 1$ • Due to bunch distribution, takes place spontaneous radiation amplification: $N_{tot} = N_s \cdot N_b (1 + (N_b - 1)F) \cong N_{sp} \cdot (1 + K)_{s}$ $K = N_b F = N_b \iff F \rightarrow 1$

MODULATED BUNCH

• And microbunched by harmonic law:

$$f_M(Z) = \frac{b}{V} \cos\left(\frac{\omega_r}{V}Z\right)$$

MODULATED BUNCH FORM FACTOR

$$f(Z) = f_0(Z) \cdot f_M(Z)$$
$$f(Z) = \frac{1}{\sqrt{2\pi\sigma_Z}} e^{-\frac{1}{2} \cdot \left(\frac{Z}{\sigma_Z}\right)^2} \cdot \frac{b}{b} \cos\left(\frac{\omega_r}{V}Z\right)$$

• **b** is the modulation depth
•
$$\omega_r$$
 is the resonant frequency (frequency of modulation)
 $F = F_Z \cdot F_R = e^{-\left(\frac{(\omega - \omega_r)\sigma_Z}{c}\right)^2} \cdot e^{-\left(\frac{\omega\sigma_R\vartheta}{c}\right)^2}$

It is taken into account, that

- The radiation angle ϑ is small, and
- Is ignored the summand containing the expression $\omega + \omega_r$ at exponent.

CU RADIATION

- In CU, except to the channeling radiation takes place CU radiation due to the positron oscillation by trajectory of "periodic curve" of crystal.
- Channeling preservation condition in CU

$$\Theta_{max} = \frac{2\pi A}{l} < \Theta_L = \sqrt{\frac{2\nu}{\gamma}}$$

• Takes place due to the choice of CU parameters

- $\circ A$, l are the amplitude and space period of CU
- ο ν , γ are potential depth of planar channel and bunch energy (Lorentz factor) in terms of positron rest energy
- Θ_{max} is the maximal bending angle
- $\circ \ \Theta_L \text{ is the Lenhardt's angle}$

 CU RADIATION CHARACTERISTICS
 Photon Number Frequency-Angular Distribution for Single Particle, Due to the Medium Polarization, is:

$$N_{s}(\omega,\vartheta) = \pi \alpha \left(\frac{qn}{4\gamma}\right)^{2} \frac{\omega}{\omega_{min}} \phi(\omega,\vartheta) \cdot \left(1 + \left(1 - \left(\vartheta\gamma_{p}\right)^{2} \frac{\omega}{2\omega_{min}}\right)^{2}\right)$$

α = 1/137 is the fine structure constant
q = γΘ_{max} is the CU parameter
γ = E/mc² is the Lorentz factor, γ_p = ω_p/Ω = l/λ_p
n = L/l is the CU period number
l is the CU space period, L is the CU length
Ω = 2πV/l : CU frequency; ω_p(λ_p) : plasma frequency.

12

FREQUENCY INTERVAL & THRESHOLD ENERGY

$$\phi(\omega, \vartheta) = \frac{\sin^2 Z}{Z^2}$$

$$Z(\omega, \vartheta) = \pi n \frac{\omega}{\Omega} \cdot \left(\vartheta^2 - \frac{\Omega^2}{\omega_p^2} \left(1 - \frac{\omega_{min}}{\omega} \right) \left(\frac{\omega_{max}}{\omega} - 1 \right) \right)$$

$$At \ Z = 0 \quad \phi = 1 \qquad \qquad \circ Q = 1 + q^2/2 \qquad \qquad \circ \gamma_{th} = \gamma_p \sqrt{Q}$$

$$\omega_{\min}_{max} = \frac{\Omega \gamma^2}{Q} \left(1 \mp \sqrt{1 - \left(\frac{\gamma_{th}}{\gamma}\right)^2} \right)$$

13

PHOTON DISTRIBUTION AT MINIMAL FREQUENCY

• When $\gamma \gg \gamma_{th}$

$$\omega_{min} = \omega_p^2 / (2\Omega)$$
 or $\lambda_{max} = 2\lambda_p^2 / l$
 $\omega_{max} = 2\Omega\gamma^2 / Q$

- Photons with boundary frequencies is radiated at a zero angle. $\longleftarrow Z = 0$
- X-ray radiation is generated at a zero angle with minimal possible frequency, due to CU parameters.
- For minimal possible frequency we have: $N_s(\omega_{min}, 0) = 2\pi \alpha \left(\frac{qn}{4\nu}\right)^2$

COHERENT RADIATION LINEWIDTH

• If choose the spatial period CU:

$$l=2{\lambda_p}^2/\lambda_r$$

• Then: $\omega_{min} = \omega_r$ • And: $F_R = 1$ $F_Z = e^{-\left(\frac{\omega_r \sigma_Z}{c}\right)^2 \left(\frac{\omega}{\omega_r} - 1\right)^2}$

• Coherent radiation distribution is defined by distribution of F_Z .

• Linewidth of coherent radiation :

$$\frac{\Delta\omega}{\omega} = \frac{\lambda_r}{2\pi\sigma_z}$$

15

COHERENT RADIATION

• Total number and gain of coherent radiation:

$$N_{tot} = \sqrt{\pi} \alpha \frac{\lambda_r}{\sigma_Z} \left(\frac{qnN_b}{8\gamma}\right)^2 b^2$$

$$K = \frac{N_{tot}}{N_s} = \frac{N_b \lambda_r}{8\sqrt{\pi}\sigma_z} b^2 = \left(\frac{b}{b_c}\right)^2$$

• Critical value of modulation depth for generation of coherent radiation:

$$b \gg b_c = \sqrt{\frac{8\sqrt{\pi}\sigma_Z}{N_b\lambda_r}} \longrightarrow K \gg 1$$
¹⁶

PARAMETERS

PARAMETERS OF CU (1,1,0) the channeling planes of diamond monocrystal d = 1.26 Å $\nu = 4.87 \cdot 10^{-5}$ ($U_0 = 25 \, eV$) $\lambda_p = 3.26 \cdot 10^{-6} cm$ $(\hbar\omega_p = 38 \, eV)$

PARAMETERS

PARAMETERS OF LCLS BUNCH

$$N_b = 1.56 \cdot 10^9$$

$$\sigma_Z = 9 \cdot 10^{-4} cm$$

 $E = 13.6 \ GeV$ ($\gamma = 2.66 \cdot 10^4$)

CHOICE

SELECTED PARAMETERS OF CU

q = 1.5 (A = 1.27 Å)

L = 1 cm

(n = 704)

 $l = 14.2 \cdot 10^{-4} cm$

$$q_{ch} = \sqrt{2\nu\gamma} = 1.6$$

RESULT

GENERATED COHERENT RADIATION CHARACTERISTICS

 $N_{tot} = 2.43 \cdot 10^{12} b^2$

```
K = 1.84 \cdot 10^3 b^2
```

 $\frac{\Delta\omega}{\omega} = 5.3 \cdot 10^{-6}$

 $b_c = 2.3 \cdot 10^{-2}$

EXPERIMENT

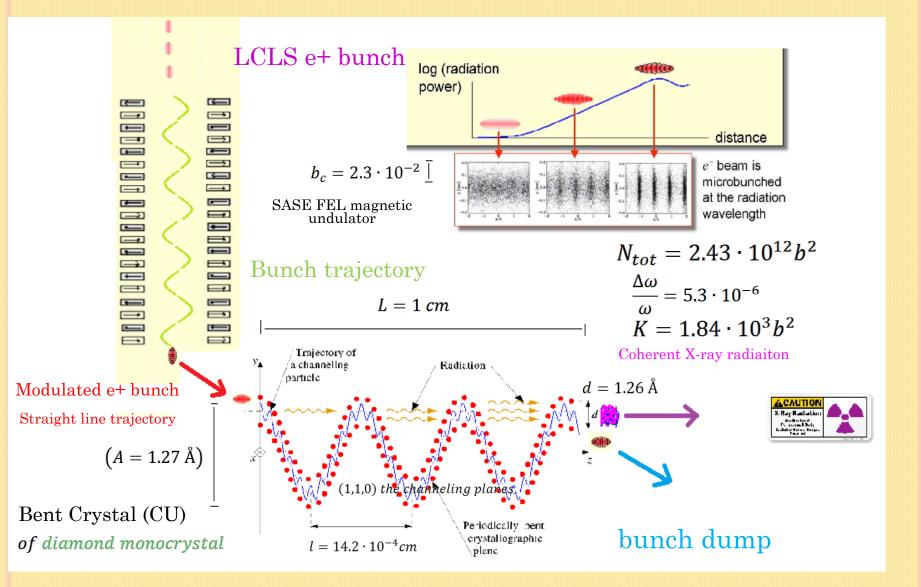
IS PROPOSED THE EXPERIMENT ACCORDING TO AFOREMENTIONED PARAMETERS

• If the gain of radiation will be found, then we can determine an important parameter b_c .

• O therwise, its upper limit b_c .

WHY MODULATED BUNCH ? WHY CU AND CU RADIATION ? **WHY POSITRON BUNCH** ? **WHY RADIATION** AT A **RESONANT FREQUENCY WHY EQUAL TO** MINIMAL **POSSIBLE FREQUENCY** ?

THIS ALL QUESTIONS


HAVE

THE SAME ANSWER:

FOR GENERATION OF

COHERENT RADIATION

ILLUSTRATION OF EXPERIMENT

 $\mathbf{24}$

THANK YOU

FOR YOUR

 ∞

ATTENTION !

HAYK GEVORGYAN

YEREVAN STATE UNIVERSITY & I.Alikhanyan National Scie

A.I.ALIKHANYAN NATIONAL SCIENCE LABORATORY (YEREVAN PHYSICS INSTITUTE)

I'm Free for Questions !

o <u>haykgev95@gmail.com</u>