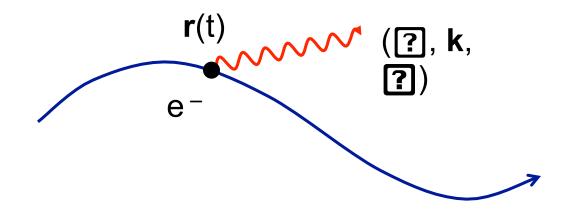
Channeling 2016 Lago di Garda, September 25-30

Derivation of the classical radiation amplitude from stimulated emission

X. Artru Institut de Physique Nucléaire de Lyon

Classical radiation formula in vacuum



applies to :

- Synchrotron radiation in weak uniform or non-uniform field, e.g. undulator radiation
- **Soft** Compton effect (Thompson regime)
- **Soft** Coherent Bremsstrahlung (? << E)
- Channeling Radiation (classical regime)
- it ignores quantum recoil effects

The formula

Jackson book (14.67) :

hbar = c = 1 ; ? = $e^2/(4$?) = 1/137 (rationalized system with $\epsilon_0 = \mu_0 = 1$)

For a polarization $\hat{\mathbf{e}}$: $dW(\mathbf{?}) / d^3 \mathbf{k} = 1/(16\mathbf{?}^3) |a_{rad}(\mathbf{k}, \hat{\mathbf{e}})|^2$

Radiation amplitude : $a_{rad}(\mathbf{k}, \hat{\mathbf{e}}) = -\mathbf{e} \mathbf{P} \mathbf{E}_{\mathbf{k}, \hat{\mathbf{e}}}^{*}(\mathbf{r}, t) \cdot d\mathbf{r}(t)$

= work done by the electron in the complex plane wave

$$\mathbf{E}_{\mathbf{k},\mathbf{e}}(\mathbf{t},\mathbf{r}) = \mathbf{\hat{e}} \exp\{\mathbf{i} \mathbf{k} \cdot \mathbf{r} - \mathbf{i}?\mathbf{t}\}$$

Precise definition of a_{rad}

• a_{rad} is a Fourier coefficient of the *radiated* field **E**_{rad} = **E**_{retarded} - **E**_{advanced} :

$$\mathbf{E}_{rad}(\mathbf{r},\mathbf{t}) = \mathbf{P} \, \mathrm{d}^{3}\mathbf{k} \, / (2\mathbf{P})^{3} \, \mathrm{Re}\left\{ \, \boldsymbol{\Sigma}_{\hat{\mathbf{e}}} \, a_{rad}(\mathbf{k},\hat{\mathbf{e}}) \, \mathbf{E}_{\mathbf{k},\hat{\mathbf{e}}}(\mathbf{t},\mathbf{r}) \right\}$$

a_{rad} is related to the assymptotic radiated field (or far field) by

$$\mathbf{E}_{far}(\mathbf{r},t) = \mathbf{?} \mathbf{?} \mathbf{d} \mathbf{?} \mathbf{\Sigma}_{\hat{\mathbf{e}}} \hat{\mathbf{e}}/r \operatorname{Re}\{-i a_{rad}(\mathbf{k},\hat{\mathbf{e}}) \exp\{i\mathbf{?}(\mathbf{r}-t)\}\}$$
with $\mathbf{k} = \mathbf{?} \mathbf{r}/r$

Discretisation of the free field modes

Fourier decomposition in discrete modes, in a **box** of volume V=L³ with the **periodic condition** f(x+L) = f(x) (idem in y and z)

In particular, $E_{rad,far}(r,t) = V^{-1} \sum_{k} \sum_{\hat{e}} Re\{a_{rad}(k,\hat{e}) \in E_{K,\hat{e}}(t,r)\}$

For any free field : $\mathbf{E}(\mathbf{r},t) = V^{-1} \sum_{\mathbf{k}} \sum_{\hat{\mathbf{e}}} \operatorname{Re}\{a(\mathbf{k},\hat{\mathbf{e}}) \in \mathbf{E}_{\mathbf{k},\hat{\mathbf{e}}}(t,r)\}$

The partial energy in mode (**k**,**ê**) is

$$w(\mathbf{k}, \hat{\mathbf{e}}) = |a(\mathbf{k}, \hat{\mathbf{e}})|^2 \times 0.5 \ \widehat{\mathbf{r}} \ d^3\mathbf{r} \{ [\operatorname{Re} \mathbf{E}_{\mathbf{k}, \hat{\mathbf{e}}}(\mathbf{r}, t)]^2 + [\operatorname{Re} \mathbf{B}_{\mathbf{k}, \hat{\mathbf{e}}}(\mathbf{r}, t)]^2 \}$$

= $|a(\mathbf{k}, \hat{\mathbf{e}})|^2 \times (2V)^{-1}$

The total field energy is $\sum_{\mathbf{k}} \sum_{\hat{\mathbf{e}}} w(\mathbf{k}, \hat{\mathbf{e}})$

Incoming and outgoing fields

Let us assume that there is a **pre-existing** *incoming* field in the mode (**K**, $\hat{\mathbf{e}}$). At t =- ?,

$$\mathsf{E}_{in}(\mathsf{r},\mathsf{t}) = \mathsf{V}^{-1} \Sigma_{\mathsf{k}} \Sigma_{\hat{\mathbf{e}}} \operatorname{Re}\{\mathsf{a}_{in}(\mathsf{k},\hat{\mathbf{e}}) \mathsf{E}_{\mathsf{k},\hat{\mathbf{e}}}(\mathsf{t},\mathsf{r})\}$$

At t? +? the *outgoing* field is $\mathbf{E}_{out}(\mathbf{r},t) = \mathbf{E}_{in}(\mathbf{r},t) + \mathbf{E}_{rad}(\mathbf{r},t)$.

In terms of modes :

$$a_{out}(\mathbf{k}, \hat{\mathbf{e}}) = a_{in}(\mathbf{k}, \hat{\mathbf{e}}) + a_{rad}(\mathbf{k}, \hat{\mathbf{e}})$$

Energy gain ΔW of the field

We have two expressions of ΔW :

$$\Delta W = W_{out} - W_{in} = (2V)^{-1} \sum_{k} \sum_{\hat{e}} \left\{ |a_{out}(\mathbf{k}, \hat{e})|^2 - |a_{in}(\mathbf{k}, \hat{e})|^2 \right\}$$
$$= (2V)^{-1} \sum_{k} \sum_{\hat{e}} \operatorname{Re}\left\{ (a_{in} + a_{out}) \times a_{rad}^* \right\}$$
(1)
$$\Delta W = \operatorname{work} \operatorname{done} \operatorname{by} \operatorname{the} \operatorname{particle} \operatorname{in} \operatorname{the} \operatorname{field} (\mathbf{E}_{in} + \mathbf{E}_{out})/2$$
$$= (a/2) \boxed{2} (\mathbf{E}_{in} + \mathbf{E}_{in}) \times d\mathbf{r}(t)$$

$$= - e (2V)^{-1} \sum_{\mathbf{k}} \sum_{\hat{\mathbf{e}}} \operatorname{Re}\{(a_{in} + a_{out}) \mid \widehat{\mathbf{E}} \mid \mathbf{E}_{\mathbf{k}, \hat{\mathbf{e}}}(\mathbf{r}, t) \cdot d\mathbf{r}(t)$$
(2)

Comparing (1) and (2), we get the radiation formula :

$$a_{rad}(\mathbf{k}, \hat{\mathbf{e}}) = -\mathbf{e} \mathbf{P} \mathbf{E}_{\mathbf{k}, \hat{\mathbf{e}}}^{*}(\mathbf{r}, t) \cdot d\mathbf{r}(t)$$

Spontaneous and stimulated radiation

recall : $\Delta W = (2V)^{-1} \sum_{k} \sum_{\hat{e}} \{ |a_{out}(\mathbf{k}, \hat{\mathbf{e}})|^2 - |a_{in}(\mathbf{k}, \hat{\mathbf{e}})|^2 \}$

For a single incoming mode $(\mathbf{k}, \mathbf{\hat{e}})$,

$$\Delta w(\mathbf{k}, \hat{\mathbf{e}}) = (2V)^{-1} \left[2 \operatorname{Re} \left\{ a_{in} \times a_{rad}^{*} \right\} + |a_{rad}|^{2} \right]$$
$$= \Delta w(\mathbf{k}, \hat{\mathbf{e}})_{stimulated} + \Delta w(\mathbf{k}, \hat{\mathbf{e}})_{spontaneous}$$

- The radiation formula dW(?) / d³k = 1/(16?³) |a_{rad}(k,ê)|² applies to the spontaneous radiation only.
- $\Delta W_{stimulated}$ comes from the interference between incoming and emitted waves. It can be positive or negative. That depends on the relative phase of a_{in} and a_{rad} .

About classical stimulated radiation

Classical stimulated radiation is the basis of free electron lasers (FEL).

The electron **energy loss** in **spontanous** radiation is generated by the *radiation reaction* force. In the electron rest frame,

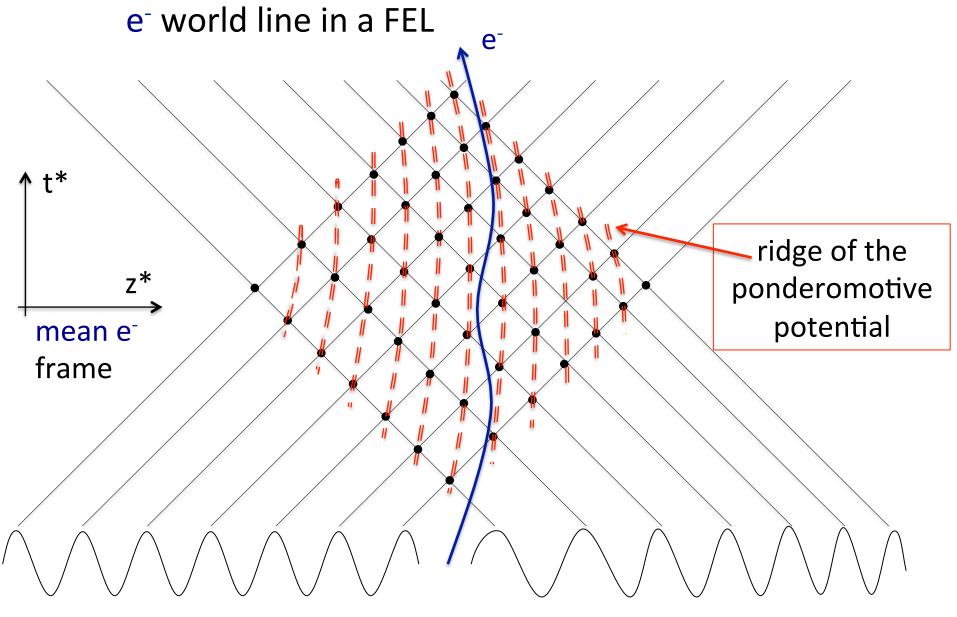
 $\mathbf{f}_{reac} = \frac{2}{3} e^2 / (4\pi) d^3 \mathbf{r} / d\tau^3$

The loss or gain due to **stimulated** radiation can be attributed to the *ponderomotive* force,

 $\mathbf{f}_{\text{pond}} = -e^2/(2m\omega^2)$ grad ? \mathbf{E}^2 ? (in electron frame), with $\mathbf{E} = \mathbf{E}_{\text{in}} + \mathbf{E}_{\text{undul}}$

 \mathbf{f}_{pond} is a semi-local average of the Lorentz force. In a FEL this force guides the electrons in *space-time channels*, in such a way that $2\Delta W_{\text{stimulated}} > 0$.

For space-time channels, see [X. Artru, *Analogy between free electron laser and channeling by crystal planes*, Channeling 2004, Frascati ; arXiv:hep-ph/0503206]



incoming wave

undulator field (with tapered period)

Conclusion

- The classical amplitude of the radiation emitted by an accelerated particle in vacuum can be derived without solving the Maxwell equations or using the Liénard-Wiechert potential.
- It suffices to use the conservation of energy in the classical stimulated radiation. The latter is the basis of FEL.
- The method directly expresses the amplitude as the work of a complex plane wave field.

Thank you for attention !

Radiation field, self-field, near zone, far zone

