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Effect	of	crystal	vibra*ons	in	channeling	
We	know	that	in	a	crystal	the	atoms	vibrate	about	their	mean	posi*ons	<Rn>												
(n	=	{n1,n2,n3}	=	laZce	site).		The	displacements	are	un(t)	=	Rn(t)	-	<rn>	.	
The	vibra*ons	reduce	X-ray	and	neutron	diffrac*on	by	the	Debye-Waller	factor		
																					exp	(–	<u2>	q2),	where	q	=	momentum	transfer	in	units	hbar	=	1.	
In	channeling,	the	vibra*ons	reduce	the	depth	of	the	poten*al	well	and	increase	the	
number	of	incoherent	sca^erings	which	cause	dechanneling,	re-channeling	and	
volume	capture.	
These	processes	can	be	simulated	on	computers	using	the	binary	collision	method	
which	builds	the	par*cle	trajectory	cell	by	cell	:		
	

In	each	cell,	the	par*cle	pomentum	is	
changed	by	q(bn)	where	bn	=	r	-	un(t).	
	
un(t)	is	generated	at	random.			
According	to	which	law	?		

bn	



How	do	atomic	chains	vibrate	?	
	

The	atom	displacements		un(t)	can	be	decomposed	in	phonons:		
	

										un(t)	=	Σk Σê	Re{	a(k,ê) ê exp[ ik.Rn – iω(k,ê)t ] }  
 
In	usual	channeling	simula*ons,	the	amplitude	of	this	vibra*on	is	characterized	only	
by	the	r.m.s.	displacement	<u2>.		
<u2>	increases	with	temperature,	while	being	nonzero	at	T=0	(‘‘zero	point	mo*on’’).	
	
Phonons	of	long	wavelengths	incite	the	neighbouring	atoms	to	vibrate	in	the	same	
direc*on.		Thus	the	vibra*ons	of	neighbouring	atoms	are	correlated	:		<um·un>	≠	0.					
In	a	simple	model,	presented	later	:		
	
																																								<um·un>	=	β|m-n|	<u2>													|β|	<	1	
	
The	parameter	β characterizes	the	both	the	strenght	and	the	range	of	the	
correla*on.			
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Decomposi*on	of	un(t)	in	phonons	:	 	a	=	atomic	spacing	
	k	=	2π/λ	

min.	wavelength	:		λ	=	2a	

Bose-Einstein	sta*s*cs	:	
<u2>			≈		(ρA	mA)-1		∫	d3k/ω			{	1/2	+	1/[exp(ω/kT)-1]	}		
	
For	long	wavelength,	the	integrand	is		~	Cte	×		d|k|	×	dΩk	

4a	

long	wavelength	
λ		~	10	a		

medium	wavelength	:		λ	~	4a	
->		β	~	exp(-1)	~	0.4	



Spring	model	for	the	atomic	string	vibra*on	
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Monte	Carlo	simula*on	
Random	drawing	of	the	transverse	posi*ons	u1	,		u2	,	….	,		un	,	....	of	the	atoms	:	
	
•  Without	correla*ons	:		draw	each		un	independently,	with	the	Gaussian	distribu*on	
	
																																												P(un)	=	(2π<u2>)-1		exp{	-	un2	/	<u2>	}									(1)													u	=	(x,y)	
	
•  With	correla*ons	:					-	draw	u1	with	(1)	
	
																																												-	draw		u2	,	u3	,	….	recursively	with	the	distribu*on	
	
																																																								P(un+1)		=		C/(2π)		exp{	-	C		(un+1-	β	un	)2	}	
	
			β 	measures	the	strength	of	the	correla*on.			|β|	<	1.		
			C		is	given	by		C-1	=	(1	–	β2)	<u2>			.		
	
Thus,		<un+1>	=	β	un		for	given	un		and			<um·un>	=	β|m-n|	<u2>,		
	
The	correla8on	length	is		λC	=	a/Log(β-1)		;					λC	→	∞			for	β	→ 1.	



Effect	of	the	correla*ons	on	dechanneling	

A	group	of	N	successive	and	nearly	aligned	atomic	nuclei	sca^ers	
an	aligned	par*cle	beam	as	strongly	as	one	super-nucleus	of	
charge	N×Z	.	
The	mean	square	momentum	transfer	is		
																					<q2>	=	N2	<q12>	,		
intead	of	N	<q12>	for	non-aligned	nuclei.	
	
Classical	explana*on	:		q	=	Σn	qn		;			qn	≈	2	Zα		bn/bn2		;			
	bn	=	impact	parameter	=		rpar*cle	–	un																																				(α =1/137)	
	
The	alignment	requirement	is	|un	–um|	<<		|b|		
	
In	reality,	N	is	limited	by	non-perfect	alignment	of	the	beam	and	
the	trajectory	bending.	



Dechanneling	simula*on		(for	axially	channeled	e-)		
	

Momentum	transfer	from	1	atom	:	
	
	q(b)	=	-	2Zα	[	(b2			+		r2nucleus)-1	-	(bn2	+	r2atom)	-1	]	b		
	
Channeling	poten*al	:	
	
Ideal	atomic	string	:	U(b)	=		(Zα/a)			Log	{	(b2		+	r2nucl.)	/(bn2	+	r2atom	))		}	+	Cte		
	
A�er	convolu*on	with	atom	vibra*ons	:	
	
	U(b)	≈	-	(Zα/a)			Log	{	(b2		+	r2nucl.		+		<u2>th)	/(bn2	+	r2atom	+		<u2>th))		}		
	
(form	used	by	Baier,	Katkov	and	Strakhovenko)	
	
Simula*on	of	the	electron	mo*on	by	binary	collision	:		
	
																								vn+1	=	vn	+	E-1	q(bn)		with		bn	=	rn	–	un				
	
																								rn+1	=	rn	+	a	vn		

atomic	screening	



Numerical	results	

-	Incidence	angle	:				vin	=	0	
-	Incidence	points	:		|rin|=	(a/20)	×	k		(k	=	0,	1,	…	9)	
  (transverse	energies	between		-	481	eV	and		-	4	eV)	
	
We	define	the	dechanneling	length		Ld	=	nd	×	a		in	two	ways	:	
>			nd1	=	No	of	the	first	binary	collision	a�er	which		ET	>	U(a/2)	
>			nd2	=	No	of	the	first	binary	collision	a�er	which		rn	>	a/2	(=	0.1nm)		
	
Results	:																							β										<nd1>								<nd2>							reduc*on	
	
																																						0.												546									1629	
																																						0.5										491									1470										10	%	
																																						0.9										391									1174										28	%	
																																				-	0.9										516									1564										4	or	5	%	

						Parameters	:	
	
						Z	=	14			(Si)				
	rnucl.	=	1	fm			
	ratom	=	0.05	nm	
							a	=	0.2	nm	
<u2>		=	(0.0042	nm)2	
							E	=	100	MeV	



						Results	at	nonzero	incidence	angle	

Incidence	angle	:				vin	=	10-3			(	≈	1/3	θLindhard)		
Incidence	points	:		|rin|=	(a/20)	×	k		(k	=	0,	1,	…	4)	
	(transverse	energies	between		-	431	eV	and		-	22	eV)	
	
Results	:																							β									<nd1>							<nd2>								reduc*on	
	
																																						0.									678									1784										
																																						0.5							600									1617										~	10	%	
																																						0.9							464									1297										~	30	%		
																																				-	0.9							630									1681									6	or	7	%	



Quantum	approach	

					

Consider	N	successive	atomic	nuclei	of	transverse	posi*ons	un	,	un+1	,	….	,		un+N		
	

In	the	Born	approxima*on,	the	sca^ering	cross	sec*on	by	this	group	is	
	
																													(dσ	/d2q)group=	(dσ/d2q)1-atom			×	|F(q)|2				
	
with	F(q)	=	Σ1N		exp(i	q.rn)		
	
|F(q)|2	=	N		+		Σn	≠	m		exp[i	q.(rn-rm)]		
	
When	|rn-rm|	<		1/q	the	interference	term	is	posi(ve.	
In	our	Monte-Carlo	model,			
																																									<|rn-rm|2>		=		2	<u2>			×	(1-β|n-m|)		
		

																									→									|F(q)|2	=		Σn,m		exp{	-	(1-β|n-m|)	<u2>		q2	}			
 The	larger	is	β,	the	stronger	is	sca?ering.		

interferences	



Semi-coherent	bremsstrahlung	
Since	the	sca^ering	is	stronger,	the	Bremsstrahlung	is	also	be	more	powerfull	
(compared	with	simula*on	without	correla*on).			

e+ 

Atoms m and n interfere if their distance  d = a × |m-n|  is less than  
•  the coherence length lC ~ γ2 /ωphoton.  
•  the correlation length λC of atom vibrations 
The result is a ‘‘Semi-coherent bremsstrahlung’’ (SCB) 
This ‘‘semi-coherence’’ is not taken into account in ordinary Coherent 
Bremsstrahlung: 
- CB is submitted only to the first condition,  
-  CB is attenuated by the Debye-Waller factor, while SCB is attenuated  
B   by |F(q)|2, which has a slower decrease.   



Conclusions		
•  The	correla*ons	between	the	vibra*ons	of	neighbouring	atoms	

decrease	the	dechanneling	length	(for	a	given	value	of	<u2>).					
					This	is	shown	both	in	classical	approach	(binary	collision	model)								
a				and	in	the	quantum	Born	approxima*on.	
•  	An	effect	of	~	30%	could	occur	if	the	phonon	spectrum	contains	a	

significant	part	of	long	waves.	
•  Since	the	sca^ering	is	stronger,	the	Bremsstrahlung	should	be	

more	powerfull	(compared	with	simula*on	without	correla*on).	
We	have	a	‘semi-coherent’	bremsstrahlung.	

•  Precise	simula*ons	with	a	more	realis*c	model	of	atom	vibra*ons	
are	needed.	

																																																				Thank	you	!	
	
		


