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The Extreme Light Infrastructure – ELI Project

ELI is a European Project, involving nearly 40 research and academic institutions from 13 EU 

Members Countries, forming a pan-European facility, that aims to host frontier high-power 

lasers, as well as various radiation beamlines (electrons, protons, X-rays and gamma rays) for 

different applications.

� ELI-Nuclear Physics (Bucharest, Romania): dedicated to 
the development of PW laser beams and the generation 

of intense gamma beams for frontier research in 
nuclear physics.

� ELI-Beamlines (Prague, Czech Republic) highly 

competitive source of extremely short pulse X-rays, 
accelerated electrons, or protons for applications (also 
biomedical).

� ELI-Attosecond (Szeged, Hungary) ultrafast light 

sources (coherent XUV and X-ray radiation) including 

single attosecond pulses, to investigate electron 
dynamics in atoms, molecules, plasmas and solids.
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EuroGammaS for ELI-NP Gamma Beam System

One of the goals of the ELI-NP infrastructure is the production of a gamma beam (ELI-NP-GBS)
using Inverse Compton Scattering of laser light from an accelerated electron beam for nuclear 
physics experiments.

� The produced gamma beam is expected to have:

- Energy tunable in the interval between 0.2 MeV and 20 MeV,

- Energy bandwidth ΔE/E < 0.5%,

- About 108 photons per second within FWHM.

� EuroGammaS association is composed by INFN, as leader, the Università degli Studi di Roma 

"La Sapienza", CNRS, ACP S.A.S., Alsyom S.A.S., Comeb Srl, ScandiNova Systems AB.

� EuroGammaS will provide the design, manufacturing, delivery, installation, testing, 
commissioning and maintenance of the Gamma Beam System (GBS), for the benefit of the ELI-

NP project, managed by the Horia Hulubei National Institute for Physics and Nuclear 

Engineering Bucharest - Magurele, ROMANIA.

http://www.e-gammas.com

EuroGammaS
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ELI-NP Gamma Beam System parameter list

Gamma beam specifications
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Inverse Compton Scattering
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Inverse Compton Scattering

IP

collimator

a monochromatic high energy beam

∆E/E < 0.5%

Low energy

Low energy

High energy

• Inverse Compton radiation is not intrinsically monochromatic, the energy is related to the emission angle. 

• The required energy bandwidth can be obtained by properly collimating the gamma beam.
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Effect of collimation

Beam spectrum at the IP

Collimated beam spectrum
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EuroGammas collimation system

• To obtain an energy bandwidth < 0.5 % at 0.2 - 20 MeV collimation apertures that varies from about 14 mm 

to 1 mm, demanding a very challenging design.

Main requirements are:

• Low transmission of gamma photons (high density and atomic number material (vacuum compatible))

• Continuously adjustable aperture (to adjust the energy bandwidth in the entire energy range)

• Avoid contamination of the primary beam with production of secondary radiation

CSPEC

concrete

shielding

GCOLL

NRSS

GCALGPI

Gamma beam characterisation and collimation (WP09)

• Collimation system in a 

vacuum chamber.

• A mechanical device 

provide fine adjustment

in X , Y,  θ (pitch) and Φ

(yaw).
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EuroGammas collimation system

20 cm

High precision linear guide
Ball screws

gears

• Stack of 14 slits with aperture 

independently adjustable (0-25 mm) 

mounted on a high precision frame.

• Each slit composed of 2 40 x 40 x 20 

mm blocks made of a 97% W alloy (2% 

Ni, 1% Fe) with roughness < 5 μm.

• 3 groups of 4 slits each with a relative 

rotation of 45° around the beam axis.
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Collimation system - Monte Carlo simulations

• To evaluate the collimation system performance a set  of Monte Carlo simulations has been carried out.

• A dedicated Geant4 application has been developed.

A complete geometry has been 

implemented. It includes:

• walls, floor and roof, 

• girders, pedestals and magnets,

• pipe and shielding block,

• a detailed model of the collimation 

chamber and Compton spectrometer.

Collimation 

chamber

Steering 

magnet

Concrete 

block

Compton 

spectrometer

Electron dump line

HE line

Scoring 

plane
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Collimation System - Monte Carlo Simulations

• The primary gamma radiation were obtained by transporting a realistic electron beam to the IP and 

then simulating(1), through the CAIN code, the collision with the laser (EuroGammaS WP02 - Petrillo).

• The radiation produced at the IP is then used as an input for Geant4 simulations.

• Gamma beams simulated:

• LE: 0.2, 1, 2, 2.5, 3, 3.5 MeV

• HE: 5, 5.8, 10, 13, 18.6, 19.5 MeV

Implementation details:

• Physics lists:

• G4EmStandardPhysics_option4

• G4HadronPhysicsQGSP_BIC_HP and for G4HadronElasticPhysicsHP

• Cuts set to 1 µm for all the volumes

• Scoring performed by using:

• Sensitive detectors 

• G4VPrimitiveScorers

• UserAction classes

(1) Laser pulse energy 0.2 J for LE IP and 0.4 J for HE IP (Table 60 TDR). 

For all simulations the electron charge per pulse is 250 pC.
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Collimation System - Expected performance

• A set of simulations to evaluate the energy distribution as a function of the collimation aperture was 

carried out for all the beams previously listed.

• The scoring was performed inside the vacuum pipe at the exit of the concrete shielding block.

• The results of simulations are compatible with the results of a mathematical collimation of the input 

beam  (θ < θcut).
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Collimation System - Expected performance
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Collimation System - Slit misalignment

48% loss
40% loss

• The effect of slit misalignment with respect to the beam axis was evaluated.

• A random misplacement with Gaussian distribution of increasing sigma (50 µm -> 

500 µm) was applied to each tungsten edge.

• The results show that the effect of this misplacement is negligible up to 100 µm

(expected 20 µm) and in any case results in a flux and a slight bandwidth reduction. 

No penumbra effects -> no bandwidth degradation emerges.

• The effect is much more relevant for HE beams.
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Collimation System - Chamber misalignment

Gamma beam

20% loss

• The effect the collimation chamber misalignment was also evaluated.

• The chamber was rotated on its center with respect to the beam axis by increasing angles, up to 1 mrad (expected 0.1 mrad).

• Misalignment causes a reduction of the flux and the effect is more relevant at HE. 
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Background evaluation

5000x10000 mm

50x100 bins

Bin size: 10x10 cm2

Concrete shielding

(2 x 2.5 x 1 m)

Scoring screen

racks

Flux of particles and dose evaluated

in various  regions of interest.

• Our simulations have been mainly aimed ad 

evaluating the signal and the background on the 

detectors downstream of the collimator.

• In the ideal case, there are no particles in the region 

downstream of the concrete block (outside of the 

pipe).

• Simulations of high-statistic background on the Ge

detector of CSPEC as a function of misalignments 

ongoing.

CSPEC
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Dose to racks

3.40E-0918.62

1.46E-11102

2.48E-1032

3.61E-0918.61

3.03E-11101

4.95E-1031

Dose rate in air (Gy/s)E (MeV)rack

At higher energies, racks receive an higher 

irradiation, mainly due to low-energy 

scattered photons and neutrons -> 

Evaluation of shielding requirement ongoing

18.6 MeV beam
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Conclusions

• An overview of the design and simulation of the collimation system for ELI-

NP-GBS has been presented.

• The results of the simulations show that the designed collimation system 

allows to obtain monochromatic beams with an energy distribution 

compatible to the parameters required (∆E/E < 0.5 %).

• The study of the effect of misalignments was fundamental to define the 

tolerances required to finalize the mechanical engineering and realization of 

the system (on going).

• The simulation of realistic collimated beams was necessary to evaluate the 

expected performance of the detectors composing the characterization 

system downstream of the collimator and to finalize their design.
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Backup slides
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Collimation effect

6 mm

4 mm

2 mm

8 mm
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Collimation System - Expected performance

Aperture of the slit at the collimator 

centre -> conical profile foreseen
1.25+0.1001.25+0.0181.25+0.0091.2518.6

1.69+0.1001.69+0.0241.69+0.0121.6910

3.53+0.1003.53+0.0443.53+0.0223.533

A13-A14 

(mm)

A9-A12 

(mm)

A5-A8 

(mm)

A1-A4 

(mm)E (MeV)
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EuroGammas collimation system – previous solution
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MC simulations – previous geometry (MCNPX)

I.P. Gamma beam

Accelerator 

Bay Wall

Concrete 

shield

Scoring Screen

Collimation 

system
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Slit misalignment

Perfectly aligned slits

Collimated beam footprint @ 18.6 MeV

Slits misaligned, σ = 100 µm



Channeling 2016EuroGammaS A collimation system for ELI-NP Gamma Beam System – design and simulation of performance

Effect of windows isolating our pipe vacuum

0.2 MeV beam, 3 mm Al windows

• 3 different material considered:

Al, Be and Kapton of increasing 

thickness (0.2 - 10 mm).

• the effect is an attenuation of 

the collimated beam (6% for 3 

mm of Al windows) and an 

increase of photons scattered at 

large angles.
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Gamma Beam Characterisation

The characterization of the gamma beam includes the measurement of:

• Average energy oh the photons

• Energy distribution, energy bandwidth

• Beam intensity, number of produced photons

• Spatial distribution, profile shape

CSPEC

concrete

GCOLL

NRSS

GCALGPI
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Gamma Beam Characterisation

• A set of various detectors is needed to perform a full characterization of the gamma beam

• The definition of the solutions and detectors is complete, the realization of the final design is 

currently ongoing

Compton Spectrometer

Nuclear resonant 
scatter System

Profile 
imager

Calorimeter
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Energy Distribution Measurement

16 ns 10 ms (100Hz)

Macro-pulse (32 pulses → 500 ns)Pulse (~1 ps)

t

• Time structure and high number of photons per pulse (105 photons, 1 ps duration) 

-> do not allow to use traditional spectrometry techniques

• It is not possible to disentangle the detector response to each single photon within a pulse

Two possible solutions: 

• Measure the energy of 1 photon in average per each Macro-pulse (time-integrated energy spectrum)

• Obtain average energy and number of photon by measuring the total energy of all gamma photons for each pulse
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Energy Distribution Measurement

• Compton Scattering Spectrometer

high-precision measurements of single Compton scattering from thin target, 

Integration over time (about 100 s) -> energy distribution evaluation

• Absorption Calorimeter

calorimetric, total absorption technique 

Fast detectors, pulse-to-pulse detection -> average flux and average energy

• Nuclear Resonant Scattering calibration system

high-precision energy measurement for selected energy values 

(integration time about 100 s) -> absolute energy calibration
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Compton Spectrometer  - Concept

Energy detector

Position detector
Gamma detector

γ

Gamma beam

Pb collimation

Electron 

detector

Micrometric Target

(Kapton polymide)

e-

• Reconstruct the beam energy spectrum by sampling Compton interactions of single 

gamma in a ultra-thin target

• Measuring the energy and position of the scattered electron, is possible to reconstruct 

the energy of the interacting gamma photon:

1≈= t
A

Z
NNN ACMPeMP αρσγ

6102.3 ×≈MPNγ
mbC 30150−≈σ %1≈α
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mrad60=φ
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M13/M30 - CSPEC

magnetic shield

gamma detector

HPGe detector

target holder

gamma beam

Si detector

Cu collimator

5 mm AISI 304

10 mm Pb shield

2 mm AISI 304
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M13/M30 - CSPEC

Geant4 model of CSPEC
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M13/M30 - CSPEC

Target 

carousel

motor (air)

carbon window 

(air-vac)

Gamma

detector (air)

Electron detectors

(vac) 

Magnetic shield

(vac)

Target (vac)


