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Standard approach:
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In covalence crystals (C, Si) 4 electrons are
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Planar channeling - thick crystal
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In “accompanying” system
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*Structure of energy bands and radiative transitions of
56-MeV electrons channeled along the (110) plane in Si
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EQUATION FOR THE WAVE FUNCTION
OF THE ORIENTED PARTICLE
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DIMENSIONLESS EQUATION FOR THE
WAVE FUNCTION OF THE FAST
PARTICLE
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ESTIMATION OF THE DIMENSIONLESS
CONSTANTS FOR THE PARTICLE IN Si
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Generation of a photon by a “bound”
electron
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Channeling photon
radiation conditions

Usual spontaneous radiation  Plasmon “wings” in radiation

*s hv,-hxomega
L 4
ME M/
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d Uy Q. hv=AF ‘d hv=AE

1. Potential in lab. system: u, ~20eVv; d ~ 0,2-0,3 A (Si);
iIn accomponying system (v, = 0): U= U, (E/mc?)

2. Number of levels: Nn~pP, _d/h~(EU,)d / hc

3. Distance between levels in acc. system: A ~U/N ~ (EU,)?(h/mcd)

4. Plasmon energy in acc. system:
hxomega = 2hxomega,/(mc?/E +E?/mc?) < 2hv,E/mc?

5. In resonance conditions radiation “wings” can be very effective:
AE ~ (EU,)¥?(h/mcd) = hv < 2hv,E/mc? = 2hE/mcA,

6. Resonance can be reached by correctly orienting laser beam, if:
E/U,>(A,/2d)? ~ 1078



FORMALISM
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Orientation dependence otf the band structure or relativistic positrons In

single crystal
The transverse motion band spectrum of a oriented fast particle in the approximation of

a sinusoidal crystal potential ( band spectrum allocated to 25MeV energy particles). The
lower band border and the upper band border vs pulse (in dimensionless units) for the
crystallographic plane ( 110) in silicon Si.
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Squares module of the even (a) and odd (b) wave functions of positrons with an energy of
28 MeV in the planar channel (110) in a single crystal Si. (BD1) - first deep sub-barrier
level; (Bd2) - the second level in the middle of the channel; (BD3) - the first above- barrier
zone (level) ); (Bd4) - second above- barrier zone
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Orientation dependence of the probability of the population of the
transverse motion positron levels for the even and odd levels
depending on the angle of incidence of the positron in a crystal
relative to the plane (110) in the Si. Angle 6 is measured in reciprocal
lattice vectors. Levels of oriented particles are numbered by index
bd. On the x-axis the wave vector is specified as a fraction of the

. reciprocal lattice vector, with five of the reciprocal lattice vectors at
; = -energy 28 MeV correspond approximately to an Lindhardt angle of

incidence of the positron
- ppe




Along the x-axis of the graph the planar potential U is shown
(solid line) and a graph of the distribution of the total density of
positive and negative charges in a crystal (a line consisting of
points).

Crystal potential U Even positron density of probability , g=11

Odd positron density of probability , g=11
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— Crystal potential U
Total (positive and negative) charge density in the
crystal
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Squares module of the even (a) and odd (b) wave functions of positrons with an
energy of 28 MeV in the planar channel (110) in a periodic potential with parameters
corresponding to the plane 110 in the silicon single crystal. x-coordinate is listed in
dimensionless units as a fraction of the interplanar distance. In Figure A: (bd0) - the
first deep sub-barrier zone; (Bd1) - third near-barrier zone; Fig. b: (bd1) - the second
zone; (Bd2) - Fourth (above-barrier) area.



Orientation dependence

Squared modulus of the matrix element of the transition
positron tor the even and odd levels depending on the angle of
incidence of the positron in a crystal.

Angle 6 1s measured in reciprocal lattice vectors.
Levels of oriented particles are numbered with index bd. On
the x-axis the wave vector 1s specified as a fraction of the
reciprocal lattice vector, with five of the reciprocal lattice
vectors at energy 28 MeV correspond approximately to an
Lindhard angle of incidence of the positron




a. First six even and b. first six odd wave functions of the
positron with the energy corresponding to the parameter q =
11.3 (about 10 MeV). It shows part of the wave functions
corresponding to only the right half of the corresponding
channel
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a. - The square modulus of the wave function of the positron
over barrier three zones of the transverse motion at g =11 a and
b. - Squared modulus of the electron wave functions for the four

zones sub barrier transverse motion at q =-10
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Orientation dependence of the probability of the population of the lower boundary of
the zone of the cross-traffic for positron in the even and odd states, respectively,
depending on the angle of incidence of the positron in a crystal relative to the plane
(110) in the Si. The angle 6 is measured in the number of reciprocal lattice vectors
corresponding to the projection of the momentum of the positron channeling across
the planes, divided by the total momentum of the positron. Levels of oriented
particles are numbered with Indeks bd. On the x-axis the wave vector is specified as a
fraction of the reciprocal lattice vector. The four vectors of the reciprocal lattice at
energy 28 MeV correspond approximately to an Lindhardt angle of incidence of the
positron, so that the value of the argument along the x-axis, approximately equal to
four, shares sub barrier and over barrier states.
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Orientation dependence of the probability of the population of the transverse
motion of the positron levels for even and odd levels depending on the angle
of incidence of the positron in a crystal relative to the plane (110) in the Si.
Angle O is measured in reciprocal lattice vectors. Levels of oriented particles
are numbered with index bd. On the x-axis the wave vector is specified as a
fraction of the reciprocal lattice vector. Five of the reciprocal lattice vectors
at energy 28 MeV correspond approximately to an Lindhardt angle of
incidence of the positron
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The lower border of 15 bands of low transverse-motion
for channeled particles with the energy corresponding

to a range of dimensionless parameter q from zero to
300
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BAND STRUCTURE FOR THE ELECTRON
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EMISSION OF THE HIGH ENERGY PHOTONS IN NON DIPOLE
TRANSITIONS BETWEEN NON ADJACENT BANDS WITH
DIFFERENT BASIS ENERGIES OF THE ABOVE BARRIER PARTICLE
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INDEPENDENCE OF THE PHOTON ENERGY ON THE BAND NUMBER
EMISSION OF THE HIGH ENERGY PHOTONS IN NON DIPOLE TRANSITIONS BETWEEN NON
ADJACENT BANDS OF THE ABOVE BARRIER PARTICLE
INITIAL SET OF BANDS AND FINAL SET OF BAND CORRESPOND TO DIFFERENT ENERGIES
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INDEPENDENCE OF THE PHOTON ENERGY ON THE BAND NUMBER
EMISSION OF THE HIGH ENERGY PHOTONS IN NON DIPOLE TRANSITIONS
BETWEEN ADJACENT (NEAREST) BANDS OF THE ABOVE BARRIER PARTICLE
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IMPOSSIBILITY
OF THE EMISSION OF THE HIGH ENERGY PHOTONS IN NON DIPOLE
TRANSITIONS BETWEEN THE STATES OF THE SAME BAND NUMBER OF THE
ABOVE BARRIER PARTICLE
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DEPENDENCE OF THE PHOTON ENERGY ON THE BAND NUMBER
EMISSION OF THE HIGH ENERGY PHOTONS IN NON DIPOLE TRANSITIONS
BETWEEN ADJACENT (NEAREST) BANDS OF THE ABOVE BARRIER PARTICLE
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NON_DIPOLE MATRIX ELEMENTS

The square modulus of the matrix elements of the transition energy of
positrons corresponding to g =11, from even state n zone sub barrier

movement to an even state of sub barrier movement with zone
number n. Designation: bdi i=1, ..., 5 of zones meet the number n =i
The square modulus of the matrix elements of the transition of
positrons with energy corresponding to g = 11, from an odd state
n zone sub barrier movement to the odd sub barrier movement

zone with the number n +1. Designation bdi withi=1, ..., 5 of
zones meet the number n = .
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The square modulus of the matrix elements of the transition of
positrons with energy corresponding to g = 11, from n zone odd state of
the sub barrier movement to an odd state of the sub barrier
movement with the zone number n +1. Designation bdi withi=1, ..., 5

corresponds to n =i band number.

yaN The square modulus of the matrix elements of the

% positron transition with the energy correspondingto q =

12 11, from n zone even state of sub barrier movement in
an odd state sub barrier movement zone number n +1.

Designation bdi withi=1, ..., 5 answers n =i number of
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The square modulus of the matrix elements of the positron transition with the energy
corresponding to q = 11, from n zone even state of sub barrier movement in an even
state sub barrier movement with zone number n +2. Designation bdici=1, ..., 5
answers n =i Zone number.
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The square modulus of the matrix elements of the
positron transition with the energy corresponding
to g =11, from even state of n zone sub barrier
movement in an n odd state sub barrier
movement zone. Designation bdici=1, ..., 5
answers n =i Zone number.
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SQUARED MODULO OF THE TWO TYPES OF NON DIPOLE
COMPLEX MATRIX ELEMENTS
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RESUME

1.The calculation of the quasi-Bloch energy spectrum of the
oriented fast charged particle entering the crystal at an angle
substantially greater than the Lindhard angle is performed.

2. It is shown that the band structure with the presence of allowed
and forbidden bands has been preserved during the passage of
fast charged particles high above the crystal potential.

3.The processes of the photon generation by the quantum crystal-

oriented particle entering into the crystal at an angle substantially
greater than the Lindhard angle are considered.

4. The probability of the photon excitation by the quantum above-
barrier channeled particle is calculated. It is proved that all of the
essential features of the above-barrier band structure manifest
themselves as the components in the emission spectrum of the
crystal-oriented fast charged particle.



