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1 General expression
We consider the case of pure electric field E in the sistem, where
the photon momentum k is orthogonal to E. Our analysisis
based on the expression for the polarization operator in electric
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field [Baier and Katkov, 2010] in the diagonal form:

Πmn =
∑

i=2,3

κib
m
i bn

i , (1)

bibj = δij , bik = 0;
b2 = e× n, b3 = e

e= E/E, n = k/ω,

r = ω2/4m2,

where we use the sistem h = c = 1,

κi =
α

π
m2r

1∫
−1

dv
∞−i0∫

0

fi(v, x) exp[−iψ(v, x)]dx. (2)

The functions fi has the form

f2(v, x) = 2
cosh(vx)− cosx

sinh3 x
+

cosh(vx)
sinhx

− v
cosh x sinh(vx)

sinh2 x
,

f3(v, x) = v
coshx sin(vx)

sinh2 x
− cosh(vx)

sinhx
+ (1− v2) coth x,

−νψ(v, x) = 2r
cosh x− cosh(vx)

sinhx
− [r(1− v2) + 1]x;

ν = E/E0, E0 = m2/e. (3)

The real part of κi defines the refruction index ni of a photon
with the polarization ei = bi:
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ni = 1− Reκi

2ω2
. (4)

And the imaginary part of κi determines the lifetime of a photon
with the polarization bi:

Wi = − 1
ω

Imκi (5)

2 Quasiclassical approximation
The standard quasiclassical approximation is valid for relativistic
created particles (r À 1, ν ¿ 1) and can be derived from Eq.
(3) by expanding the function fi(v, x), ψ(v, x) over x power.
Taking into account the higher powers of x in the exponent one
gets:

f2(v, x) =
1− v2

12
(3 + v2)x, f3(v, x) =

1− v2

6
(3− v2)x,

ψ(v, x) =
r(1− v2)2

12ν

(
x3 − 3− v2

30
x5

)
+

x

ν
(6)

Here the term ∝ x5 is correction to SQA. Expanding the term
with x5 in the exponent and making substitution x = νt one
finds:
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κi = − α

4π
m2κ2

1∫
−1

dv
∞−i0∫

0

gi(v, t) exp
[
−i

(
t + ξ

t3

3

)]
tdt, (7)

g2(v, x) =
1− v2

12

(
3 + v2 + i

9− v4

90
ξν2t5

)
, (8)

g3(v, x) =
1− v2

6

(
3− v2 + i

(3− v2)2

90
ξν2t5

)
(9)

where

ξ =
1
16

(1− v2)2κ2, κ2 = 4rν2. (10)

At κ ¿ 1 one has

Reκi =
4α

45π
m2κ2ai, a2 = 1 + κ2, a3 =

7
4

+
13
14

κ2 ; (11)

−Imκi = −i

√
3
32

αm2κ exp
(
− 8

3κ

)
ci,

c3 = 2c2, c2 = 1 +
32ν2

15κ3
= 1 +

4
15r3/2ν

. (12)

As the corrections should be small and ν ¿ 1, SQA already
broken at relativistic energies when r . ν−2/3.
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3 Region ν2 ¿ r ¿ 1/ν2.

Let’s move the integration contour over x in Eq. (2) to the lower
axis in point x0,

x0(r) = −ia(r), a(r) = 2 arctan
1√
r
. (13)

As a result we have the following expression for κi:

κi =
α

π
m2r (αi + βi) ,

where

αi =
1∫
−1

dv
x0(r)∫
0

dxfi(v, x) exp[iψ(v, x)], (14)

βi =
1∫
−1

dv
∞∫

x0(r)

dzfi(v, x) exp[iψ(v, x0)]. (15)

In the integral αi small values x ∼ ν contribute. This integral we
calculate expanding the entering functions over x. Taking into
account that in the region under consideration the condition
rν2 ¿ 1 is fulfilled we extend the integration over x to infinity.
As a result we have Eq. (11). In the integral βi the small values v
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contribute. Expanding entering functions over v and extending
the integration over v to infinity we have:

βi =
∞∫
−∞

dv
∞∫

x0(r)

dxfi(v = 0, x) exp[− i
ν

(ϕ(x) + v2χ(x))]. (16)

where

ϕ(x) = (r + 1)x− 2r tanh
x

2
, (17)

χ(x) = rx
( x

sinhx
− 1

)
(18)

From the aquation ϕ′(x0) = 0 we find that x0 is the stationary
phase point. Due to the fact ν ¿ 1, we can use the stationary
phase method. In x0 we have:

iϕ(x0) ≡ b(r) = (r + 1)a(r)− 2
√

r,

iϕ′′(x0) =
r + 1

r
, iχ(x0) =

√
ra(r)b(r),

if2(v = 0, x0) =
r + 1
2r
√

r
, if3(v = 0, x0) =

1√
r
. (19)

Performing integration in Eq.(16) over v and using the standard
procedure of the stationary phase method, one obtains for the
imaginary part of κi:
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Im κ2 = −αm2ν

2

√
r + 1

ra(r)b(r)
exp

(
−b(r)

ν

)
,

Im κ3 =
2

r + 1

(
r +

ν

4π

)
Imκ2, (20)

For r À 1, the first two term of the decomposition b(r)/ν over
power of 1/r are

−b(r)
ν

' − 4
3ν
√

r
+

4
15νr

√
r

= − 8
3κ

+
32ν2

15κ3
. (21)

It follows from this formula that, applicability of Eq. (20) is
limited by the condition r ¿ 1/ν2. If the secon term is small, it
can be droped down in Eq. (20). Under these conditions a(r) '
2/
√

r, and we have

Im κ2 = −αm2ν

4

√
3r

2
exp

(
− 4

3ν
√

r

)(
1 +

4
15νr

√
r

)
,

Im κ3 = 2 Im κ2 (22)

This formula coinside with Eq. (12). So at r À 1, the overlapping
energy region exists where both the formulated here and SQA
are valid. At low photon energy (ν2 ¿ r ¿ ν2/3) the probability
Eq.(20) has a form
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Im κ2 ' −αm2ν

2π
√

r
exp

(
−π

ν
(1 + r) +

4
√

r

ν

)

×
(

1 +
3
√

r

π
+

4r
√

r

3ν

)
, (23)

Im κ3 =
(
2r +

ν

2π

)
Imκ2. (24)

At r ¿ 1, the term ∝ v2 in the exponent Eq. (16) has the factor
iχ(x0)/ν ' π2

√
r/ν. For this reson, the proposed procedure for

integration over v is violated when this factor is comparable or
smaller than unity.

4 Very low photon energy
At r ' ν2 for the imaginary part of κi in Eq.(2) we can integrate
over x from −∞ and divide the result by two. Then we close
the integration contour in the lower half-plane by the following
way

Imκi = i
α

π
m2r

1∫
−1

dv
∞∑

n=1

∮
fi(v, x) exp[−iψ(v, x)]dx, (25)

where the path of integratin over x is any simple closed contour
around the points −inπ. Because of appearance of the factor
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exp(−πn/ν), the main contribution to the sum gives the term
n = 1. Expanding the function entering in Eq.(3) over variables
ξ = x+ inπ and keepin the main terms of the decomposition we
find

f2(v, x) = − 4
ξ3

cos2(vπ/2), f3(v, x) =
iv
ξ2

sin(vπ), (26)

ψ(v, x) =
4r

ξν
cos2(vπ/2)− ξ

ν
+

2i
ν

rv sin(vπ)+

iπ
ν

[1 + r(1− v2)]

Using the integrals Eq.(7.3.1) and Eq.(7.7.1) in [Bateman and
Erdelyi 1953] we find

Im κ2 = −2αm2 e−π/νI21

(
2
√

r

ν

)
, (27)

Im κ3 = −αm2e−π/ν ν

π

[
I20

(
2
√

r

ν

)
− 1

]
. (28)

where In (z) is the Bessel function of imaginary argumant.
For r À ν2, the asymptotic representation In (z) ' ez/

√
2πz

can be used. As a result one obtains the probability Eqs.(23),
(24). For r ¿ ν2,we have

Imκ2 = −2r

ν2
αm2 e−π/ν , Im κ3 = − 2r

νπ
αm2 e−π/ν . (29)
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The above analizysis is not complet. In this region of energy,
we have to consider the probability of direct pair creation by an
electric field (vacuum probability). The distribution of the pair
density np over transverse momentum has a form

dnp =
m2νt

4π3
exp

(
−π

ν
− πp2

⊥
νm2

)
d2p⊥ (30)

From this equation, it’s clear that the produced particles are
non-relativistic. In turn, the cross-section of the absorption of
a soft photon by a non-relativistic electron (positron) in an
electric field is

σ =
α

π2m2ν2
K2

1

(
2
√

r

ν

)
. (31)

Here Kn(z) is the McDonald function. Multiplying the density
and cross-section and integrating over the transverse momentum,
we have for the vacuum probability per unit time of the absorption
of a soft photon:

W =
αm2t

4π5
exp

(
−π

ν

)
K2

1

(
2
√

r

ν

)
(32)

For r À ν2, the asymptotic representation Kn (z) ' e−z/
√

2πz
can be used. As a result one has

W =
αm2

4π6ω
exp

(
−π

ν
− 4

√
r

ν

)
(tmν) (33)
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The term (tmν) = t/tf , tf = 1/mν in this case. Comparing this
probability with the Eq. (23), we have

W

W2
=

ν2

8π6r
exp

(
−8
√

r

ν

)
t

tf
(34)

In any case the value of t/tf should be large. For r ¿ ν2 (z ¿
1), K2

1(z) ' z−2 and the vacuum probability per unit time of
the absorption of a soft photon has a form

W =
αm2ν2

4π5rω
exp

(
−π

ν

) t

tf
, (35)

were tf = 1/ω. During the time tf , the electron is accelerated
to relativistic energies eE/ω À m. Comparing this probability
with the Eq. (29), we have

W

W2
=

ν4

32π5r2

t

tf
=

1
2π

(
eE

πmω

)4
t

tf
(36)

0-10


