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Introduction

The emission of characteristic lines after x-ray excitation is usually explained as the
consequence of two independent and consecutive physical processes:

» the photoelectric ionization produced by the incoming photons

» the successive spontaneous atomic relaxation.

However, the photoelectric effect is not the only ionization mechanism for the

incoming photons:

« Compton ionization contributes not negligibly to the ionization of single shells,
mainly L and M.

» Moreover, secondary electrons from both interactions, photoelectric and Compton,
are also able to undergone ionization by means of the so called impact ionization.

Another mechanism of line modification is the so called self-enhancement produced
by absorption of the tail of the Lorentzian distribution of the characteristic line.
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Introduction

All these effects concur to the formation of the characteristic lines giving a more
precise picture which is specific of the single line and the element.

This work furnishes a review of these contributions and how they influence the
formation of the line.

It is given a complete picture of the photon kernels describing the emission of
characteristic x-rays comprising all these major and minor effects.

These kernels can then be followed along successive photon interactions in
deterministic or Monte Carlo photon codes to describe the effect of the multiple
scattering.
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mechanisms

Scheme of X-ray interaction

The full description of the radiation field requires the modeling of
coupled photon-electron transport
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Multiple scattering is usually described
using the Boltzmann transport model

The photon interactions are depicted with the interaction
kernels k;

d
15 f@@E) = —u(E)f (2,3, F)

all interactions

+ Z foo (f U (2)k; (E)",E',aj, E)f (Z,B',E’) dw’) -
] 0 4

l
+ S(z, w,E)

Not all the radiative contributions involved in an X-ray
transport process are considered by the Boltzmann model
and by the used interaction kernels k; |
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~ X-ray production mechanisms from
P coupling terms

The full description of the radiation field requires the modeling of
coupled photon-electron transport
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MS is better described using the
modified Boltzmann transport model

The Boltzmann transport model has been recently
modified to include the electron-photon contributions

W0 /0z [Ty (Zzw E)=—ulp (F)fTv (zw E)+ YiTall vhoton

" ET )dwl )dET + STy (zw ,E)
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Condition to fulfill in order to produce
photoelectric effect

Substance: Fe
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Transport kernel for the emission of
characteristic lines

i To-p (w T ET w BE)=1/Ar Yilall lines #0JEL] (ET
"VOE=ELDUET —Fledi )

S/ NN

isotropic  line emission mono- threshold for
distribution cross section chromatic  photoelectric
line absorption
where QLELL (ET )=tls,edi (ET ) plEl

/SN

photoelectric probability of
cross section X-ray emission
of shell e/ of the line at £J/

ALMA MATER STUDIORUM ~ UNIVERSITA DI BOLOGNA




Minor contributions to the x-ray
characteristic lines

1) Compton ionization

2) Inner shell impact ionization
3) Self-absorbtion of the Lorentzian tail
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Contribution from Compton
lonization

Compton ionization 1s usually neglected because the total Compton cross
section o 1s much lower than the total photoelectric cross section t for
low and mid range x-ray energies : 6.1

A proper comparison of the extent of Compton and photoelectric cross
sections requires the comparison of single shell cross sections (instead of
total cross sections) as a function of energy:

glCi (E)vs i (£)
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Contribution from Compton
lonization
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The XRF emission due to Compton ionization may play a
relevant role in terms of single shell contributions
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|A Compton cross section:
Compton proflles

dply in a coordinate system in which the scattering vector defines the z-axis direction.

/(pdz ) is called the Compton profile. The constant of proportionality is the Klein-
Nishina cross section. It is customary to define pdz /mc~0/137 with ¢ a
dimensionless variable with tabulated values in the range [—100, 100].

0=137 £F— £I0 + ££I0 /mcT2 (1—cosé )/(ET2 +£00 12 —FF£I0 cosf)T1 /2

For each shell, it is possible to express the maximum value of ¢ as a function of the
incoming energy £Y0 and the scattering angle (this is done by putting £=£Y0 —/47, /L
being the binding energy of the shell):

OLiMAX =137 EIO (£I0 =747 ) /mcT2 (1—cosé )1l /[(£L0 —
[0 )T2 +F£00 T2 =2(£I0 =717 )ELO cosé |11 /2
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|A Compton cross section:
Compton profiles

15 25 2p 35 3p ———
1s2s2p 3s3p 3d —
6 |\ 1s 2s 2p 3s 3p 3d 4s

n*J

Momentum

Tabulated values of the Compton profiles can be found in literature: Biggs et al, 1975. It is important
to underline that these values are for free electrons. The decomposition of a Compton profile into
the contribution of the various shells shows that inner shell electrons, more tightly bound, have
larger momenta, ranging from 0 to large numerical values. For outer shells, the Compton prI)fiIe is

peaked for the O value.
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|A Compton cross section:
single shell and total

By integrating the tabulated values of the Hartree-Fock Compton profiles in Biggs et al.
1975, it is possible to derive the single shell Compton cross section for each shell of
the element;

Jdi( 0)52’0 sinéddd

And the total Compton cross section is:

A AL i AL
S WL (¢ )U/ DlllUbLU

ANCEL EB)=(E/EL0 )12 (£/EL0 +£10 /F —sinT2 8 )
Here IS the Klein-Nishina cross section

Elp= £I0 /1+£40 /mcT2 (1—cosé)
and Is the Compton peak energy
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- Single shell Compton cross sections
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XRF from Compton ionization:
evaluation strategy

By replacing the |IA single shell and total cross sections we obtain

Which replaces the crude constant approximation used by Pavlinski and Portnoy
(G.V. Pavlinski and Yu. Pornoy, X-ray Spectrometry 43 (2014), 118-121)

agliIl4 /
agllAd =

nli /7
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XRF from Compton ionization:
evaluation strategy

The single shell Compton cross section is computed by means of a mixed
procedure involving both the Waller-Hartree (WH) and the impuise (l1A)
approximations as:

This mixed procedure allows the computation of the single shell
Compton cross section by preserving all the advantages of both
the WH and the IA approximation:

* The IA approximation allows the computation of the Compton cross section for
each shell starting from the single shell profiles data library from Biggs et al.!]

« The WH approximation gives a better description of the cross section in the
energy ranges close to the binding energies of the considered element

[1] Biggs, F.; Mendelsohn, L.B. and Mann, J.B. (1975), Hartree-Fock Compton profiles for the elements. Atomic Data and Nuclear
Data Tables 16:210-309. doi:10.1016/0092-640X(75)90030-3
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XRF from Compton ionization:
evaluation strategy

The single shell photoelectric cross section t; is computed
by using two different data libraries:

Allows a better description of
the single shell photoelectric
« The EPDL97 Database from Cullen et al [1]« cross section
« The attenuation coefficient data tables and fitting functions
from McMaster et al [

The ratio sg;/t; is evaluated as a function of the primary
photon energy E’ for a fixed grid of energy values in
the range 1 - 1000 keV for the K, L and M shells of all

elements with Z =11 - 92

[1]Cullen et al (1989), Tables and Graphs of Photon-Interaction Cross Sections from 10 eV to 100 GeV Derived from the LLNL Evaluated Photon
Data Library (EPDL). Lawrence Livermore National Laboratory Report UCRL-5400, 6(A-B)

[2] McMaster et al. (1969), Compilation of X-ray cross-sections. Lawrence Livermore National Laboratory Report UCRL-50174,

Sect. 2, Rev. 1.
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Single shell photoelectric-Compton
cross section ratio

For all the shells from K to M5 it is assessed with good precision the
atomic number at which the Compton interaction becomes the main

process of ionization (SC,-/t,- >100%) within the energy range 1-150 keV

Z < 17 for the K shell

Z < 29 for the L1 shell
Z < 48 for the L2 shell
Z < 52 for the L3 shell
Z < 44 for the M1 shell
Z < 62 for the M2 shell
« Z <68 forthe M3 shell
« Z =92 for the M4 shell
o Z =92 forthe M5 shell

The obtained results show that the XRF contribution from Compton

single shell ionization plays a relevant role in the description of
the radiation field in X-ray spectrometry that up to now has been
neglected
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Compton ionization
kernel refinement

The kernel for the XRF from Compton ionization was introduced in
the Boltzmann model as a correction of the emission kernel

The contribution due to Compton scattering can be added to the
photoelectric cross section as a corrective term

1 n lines

AKG 7 (@, B ') = EQE (E') f (E) 8(E~E)[U(E-E, ~1)]
|
Ix Compton ionization occurs
fC(E') _ o, (£") when the energy transferred
Extent of the correction € 7, (E") to the electron (£7T —£ip)

exceeds the binding energy
of the shell /{7

A general parametric function capable of describing the energy
dependences of the XRF correction from Compton ionization has
been investigated
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Extent of the correction: Compton-
photoelectric cross section ratio

For each shell i (K, L
and M) of all elements
Z=11-92, it was
computed the energy
value
E’ (Z) for which the
ratio s;/t; becomes
equal to a given fixed
percent value
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Extent of the correction: Compton-
photoelectric cross section ratio
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Conclusions on
XRF from Compton ionization

(JThe XRF emission due to Compton ionization was computed for the
shells K, L1-L3 and M1-M5 of all elements with Z from 11 to 92

J A new kernel which includes the XRF emission from Compton
ionization has been introduced in the Boltzmann model

dThe energy to reach a given extent of the correction as a function of
Z has been computed for the shells K, L1-L3 and M1-M5 (1, 5, 10, 20,
50, 100%)

It is demonstrated that the XRF contribution from single shell
Compton ionization plays a role in the description of the radiation
field in X-ray spectrometry, specially for L and M shells |
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Minor contributions to the x-ray
characteristic lines

1) Compton ionization
2) Inner shell impact ionization
3) Self-absorbtion of the Lorentzian tail
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Electron contributions to
photon transport

The aim is to evaluate the contribution due to electrons to be included in
photon transport codes without solving the complete coupled problem.

The code PENELOPE (coupled electron-photon Monte Carlo) was used
to study the effect of secondary electrons into the photon transport.

An ad-hoc code KERNEL was developed to simulate a forced first
collision at the origin of coordinates. We considered a point source of
monochromatic photons.

The physics of the interaction was described using the PENELOPE
subroutine library.

All the secondary electrons were followed along their multiple-scattering
until their energy become lower of a predefinite threshold value.

All photons produced by the electrons at every stage were accumulated.
Polarization was not considered.
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Electron-photon coupling
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Adopted solution

Problem
The solution of the coupled transport problem

is very time consuming because electrons
interact continuously

Possible Solution
Compute an off-line corrective term to the photon kernel which

fully describes the effect of secondary electrons in pure photon
transport codes

[ Bremsstrahlung [ Inner shell impact ionization (ISIl)
contributes a continuous distribution |modifies the intensity of the characteristic lines
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Adopted Solution

A The code PENELOPE!"! (coupled electron-photon Monte Carlo)
is used to study the effect of secondary electrons into the
photon transport

O PENELOPE uses refined hybrid techniques to describe the multiple scattering
of electrons

0 For Bremsstrahlung uses its own scaled differential cross sections data base
generated from the original database of Seltzer and Berger!? 3]

O The ad-hoc code KERNEL was developed to simulate a forced
first collision at the origin of coordinates
O We consider a point source of monochromatic photons

O All the secondary electrons were followed along their multiple-scattering until
their energy become lower of a predefinite threshold value

O All photons produced by the electrons at every stage were accumulated

O The ISII contribution have been computed for electrons generated by Compton
interactions and photoelectric effect for all source shells

[1] F. Salvat, J.M. Fernandez-Varea, and J. Sempau, PENELOPE, a code system for Monte Carlo simulation of electron and photon transport, Nuclear Energy
Agency (NEA), Paris 2008.
[2]Seltzer, S.M., Berger, M.J., 1985. Bremsstrahlung spectra from electron interactions with screened atomic nuclei and orbital electrons. Nucl. Instrum.

Meth. B 12, 95-134.
[3]Seltzer, S.M., Berger, M.J., 1986. Bremsstrahlung energy spectra from electrons with kinetic energy 1 keV—10GeV incident on screened

nuclei and orbital electrons of neutral atoms with Z % 1-100. At. Data Nucl. Data Tables 35, 345—418.
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Characterization of the correction

The ISl correction was studied in terms of:
Spatial distribution

¥

The correction roughly occurs at the same place of the photon collision

Angular distribution

\ 4

The correction is isotropic

Energy distribution

4

The correction depends on energy

ALMA MATER STUDIORUM ~ UNIVERSITA DI BOLOGNA



Energy distribution for the |SI|
correction

Since the electrons loose their energy more efficiently in the low energy
range, the computed contribution is higher for low energy lines.

To compute the correction for a generic energy the whole interval is
divided into 5 energy regions.

Region 5 4 3 Region 2 Region 1

1 keV Eaos  Eaiz  Eapud Eabk 150 keV

The best fit of the energy correction at each energy region R is computed
using a fitting model with 4 coefficients.

Jr(E)= eXp[i O IN(E)' ]
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Kernel correction due to inner
shell impact ionization

Ak, " (@,E, @, E")

Ej

5(E_Ei) U(E'_]i)

electron electron

1 '
—EQA,.(E)

* To avoid data-base differences between PENELOPE and other transport
codes the electron correction /fz (£ ')\peis computed in units of the photon
contribution 9, (£").

- Ll &)

Ak, CP(@E, @ EY) =
' electron 47[

Ej

O (E') 0(E-E,) U(E™-1))

JAY/,

fE (Ev) — QE" (E') electron Computed Wlth
o s O (E") PENELOPE
QEi (E') = Ts,el. (E') pEl-
* To compute the correction for a generic energy the whole interval is

divided into 5 regions. The best fit of the energy correction at each energy
interval requires 4 coefficients.

fo(ED| = exp(z o, In(E)’ ]

ISII
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|SI| correction on K-lines
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|SI| correction on L-lines

- _..-""'/-v _,.{ - Z
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|SI| correction on M-lines

calculated ——+—

fit —%—
25 | W Ma, (1.7754 keV) | High Z (62-92)

Tk (E)‘ pe __.:L
15

T % . Best fit

045— 1 Je(E )‘pe = exp[z o ln(E)k]
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Absolute value of the correction AQ= Q_ecieq Q- has been computed for
all lines of the elements with atomic number Z=1-92.

o 10t
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Absolute value of the correction
AQ= Qyrecteq Q- It is apparent
that the correction is significant
only within a restricted energy
interval. It has maximum for
excitation energy of 7 keV (AQ/
Q=3.4%). The vertical line near
the left border represents the K
edge.
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Absolute value of the correction AQ= Q_ecieq Q- has been computed for
all lines of the elements with atomic number Z=1-92.
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Energy of the maximum as a function of Z

K lines (comprising Ka1, Ka2 and K31
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Absolute value of the correction AQ= Q_ecieq Q- has been computed for
all lines of the elements with atomic number Z=1-92.
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AQ maximum (in % of Q) as a function of Z
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Energy of the maximum as a function of Z
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Conclusions ISIl contribution

The inner shell impact ionization correction has been studied in terms of: spatial,
angular and energy distribution.

It is shown that the correction is point wise and isotropic.
The energy dependence of the correction has been parameterized using 20
parameters (5 energy regions, 4 parameters each) for all K and L lines and few M

lines for the elements Z=1-92 in the range of 1-150 keV.

The new kernel brings to deterministic or MC photon transport codes the effect of
inner-shell impact ionization (IS1l) computed off-line with the code PENELOPE.

The limited energy range where the absolute correction is relevant makes it this
correction more relevant for monochromatic excitation than for polychromatic one.
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Minor contributions to the x-ray
characteristic lines

1) Compton ionization
2) Inner shell impact ionization

3) Self-absorbtion of the Lorentzian tail
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The width of the atomic levels is responsible for
the natural width of the lines

:E: ]f 0

total subshell
tranfs'c;tt;lon level v I,
wi width

[=I,+I,

The widths of the atomic levels are the
recommended values in Campbell and Papp, At.
Data and Nucl. Data Tables 77, 1-56 (2001)
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Emission of a Lorentzian K-line

K edge E,

K line o

(close to the edge) \
VS N
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Example for K-line (pure element)
First order approx. (tail attenuation)

[ 1
K line a
(close to the edge)
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Second order contribution
(self-enhancement by the tail)

secondary K line
(lower intensity) - -
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/-0 Transport kernel for a single Lorentzian line

L, 1 [ .
Py > :_QE(E)E(EaEm}/E) [I_U(E_EO)]
i L 47Z- i i
ergy conservation
Emission probability
with the previous
modifications edge E,
E") = E
0: (E) = Gy ) Wit
distribution
K(Ea Ela 7/ , ) T :
- ”«E— jm
__—f*/ : l\\\
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- Discretization of the Lorentzian distribution
) (wavelength regime)

We define a new normalized distribution between the finite limits |- (2¢ +1)7;,(2¢ +1)y;]

| Vi
0 A Asy, ) =—+ : \
A, +(21+1)y, 5 |'"I
where V= U(A, A7, ) dA==arctan(2r +1)
A, —Q2t+1)y; T

and use a discrete d-expansion for the Lorentzian

|
l
IIl
, 1Y
LA 7,) = X, o 8= +2ky) I\
k=—t . S
i ici — E—
with coefficients . 2wy 2y 2y
pi= [0 (AAsy,)dA
A +2ky; =7,

=— [arctan(2k +1) —arctan(2k — 1)] , (k = —t..t)
1%/4
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. Discretized kernel for the Lorentzian line
) (wavelength regime)

ky, (@.4,8,2)

=20, (Y p, (A=A 1- U =2, )IU(A-2)

t

= iQ&_ (A)1-UU - lel. )] Z Pr 5(2’ — A )

k:kmin
with
Ay = A +2ky,
j- X |
k_. =max| —t,— 5 (energy conservation cut-off)
Vi
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Primary XRF intensity of a Lorentzian line

The primary intensity of the line centered at the peak wavelength A for an

4

infinite thickness specimen is computed within an infinitely large acquisition window

LO00], = Lo, I~V -AN S

k

ky = max[— t,—M}

IU( k) photoelectric M

collision IR
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Secondary XRF intensity of a Lorentzian line

The secondary intensity of the line centered at the peak wavelength /11- for an
infinite thickness specimen is computed within an infinitely large acquisition window.

B ] all lines t )
L0 =] 20, (-Ud=4)) 3 p. 0, (A1~ ~4,)
J s=smin ;
z P ‘77‘ Inl 1+ Hi n ‘770‘ Inl 1+ Hy
k=koin, (A35) Hikc [Tl +ﬂo‘77‘ My M 77‘ M M 770‘ |
I A=A ’ A
. )= —t.— : 2 A
Konin (4,) =max| —¢,~Int 7 | (/10 ; . ” (ﬂ’ikz /1]-_9)
_ hotoelectric 'l‘
s ( ﬂo) — max| — f,—IIlt lj 20 phg(t)cl)”eslﬁ)cr’]tric /ﬁ ﬂjs i collision /
7 27/j ( ) Al
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Example of almost symmetric Lorentzian lines

Sometimes the asymmetry is small ...

0.01

1E-3

esd | T primary Fe Ko,
— total enh on Fe Ko,

1E-5

1E-6

1E-7

Intensity (a.u.)

1E-8

1E-9

1E-10

1E-11 4 T T T T T T T T T T T T T T T 1
5.6 5.8 6.0 6.2 6.4 6.6 6.8 7.0 7.2

Energy (keV)
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Secondary fluorescence for Lorentzian contributions can
be very asymmetric

Sometimes the asymmetry is large ...
1E-4
€54 | T Cr Ko, - Cr KB,
1E-6 Fe Ko, —> Cr KB,
-------- Ni KB, -> Cr K,

1E-7

1E-8
1E-9
1E-10
1E-11
1E-12

Intensity (a. u.)

1E-13

1E-14
1E-15 \
1E-164 __.----""

etvv"r+r—TTT——T T T T T
5.0 5.2 5.4 5.6 5.8 6.0 6.2 6.4 6.6 6.8 7.0

Energy (keV)
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Conclusions for the Lorentzian shape
contribution

v'"When the Lorentzian tail crosses the edge, i.e. the energy of the emitted
photon is high enough to produce another vacancy and, therefore, a self-
enhancement effect.

v'Since the high energy tail has always a low probability, this case
requires refined variance reduction techniques in order to get significant
results in MC codes.

v'The slow asymptotic decrease of the Lorentzian distribution introduces a
further complication to describe multiple scattering with reasonable
statistics.

v'Therefore, is better to use either

(a) a deterministic method based on the energy (wavelength)
discretization of the Lorentzian distribution, or

(b) an approximate analytical solution.
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Minor contributions:
Final Conclusions

Minor contributions may give no negligible contributions to the intensity and the
shape of the characteristic lines

All these minor contributions considered are positive, therefore they sum-up giving
a larger modification.

By considering only the major contribution (photoelectric ionization) it is introduced

a systematic error in the line intensity evaluation which makes it more difficult the
comparison between experimental intensities and theoretical probablities.

This error increases with the number of minor contributions neglected.

The atomic parameters more affected by these errors are the line probabilities and
the fluorescence yields.

This work puts together and sumarizes three corrections which can be added to
MC and deterministic codes of photon transport.
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Summary of the contributions

Photoelectric Major Primary Dominant Al Increase
ionization photon effect the effect
Inner Shell Minor Secondary Important low energy Increase
Impact electrons with K, L, M the effect
lonization monochro  lines

matic

excitation
Compton Minor Primary Depends L, M lines Increase
ionization photon on source at medium- the effect

polarization high source

energy

Self- Minor Secondary Asymmetry Broader Increase
enhancement photon of the line  lines the effect

ALMA MATER STUDIORUM ~ UNIVERSITA DI BOLOGNA



Thanks for your attention

jorge.fernandez@unibo.it
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