XRF imaging based on polycapillary optics

Kouichi Tsuji, Shota Aida, Yuki Takimoto

Osaka City University, Osaka, Japan

<u>Overview</u>

1) Scanning confocal m-XRF imaging (focusing polycapillary)

2) WDXRF imaging spectrometer (straight polycapillary)

3) FF-EDXRF imaging with CCD camera (straight polycapillary)

Conventional micro-XRF Confocal micro-XRF

•Small region can be analyzed using x-ray focusing optics, such as polycapillary optics.

Polycapillary lens attached to the SSD collects the x-rays emitted from the confocal point.

L

Nondestructive depth-selective XRF analysis is possible.

Figure 5. Possible applications of capillary optics for Xray fluorescence microanalysis. In the lower figure the volume analyzed is defined by the object spot size of one lens and the image spot size of the other. Since the analyzed volume can be interior to as well as on the sample surface, three-dimensional analysis is possible.

W.-M. Gibson, M.A. Kumakhov, *Proceedings of SPIE*, **1736**, 172-189 (1993).³

178 / SPIE Vol. 1736 X-Ray Detector Physics and Applications (1992)

Fig. 2. Photo of the confocal set-up at the BAMline, BESSY II.

Advantages of confocal m-XRF in the laboratory:

- Small volume analysis
- ♦ 2D, 3D elemental distribution
- Nondestructive depth selective XRF (image)
- Inside of the sample (solid, solutions)
- Long-time measurement

Monitoring of chemical reactions in the solution by confocal m-XRF

➢ K. Tsuji, T. Yonehara, K. Nakano, Application of confocal 3D micro XRF for solid/liquid interface analysis, *Anal. Sci.*, **24** (2008) 99-103.

➢ S. Hirano, K. Akioka, T. Doi, M. Arai, and K. Tsuji, Elemental depth imaging of solutions for monitoring corrosion process of steel sheet by confocal micro-XRF, X-Ray Spectrom., 43 (2014) 216-220. (monitoring of corrosion process)

Analytical modes by Confocal M-XRF

Cross sectional, Depth elemental imaging

Elemental images obtained by micro-XRF

Micro-SD memory card used for mobile phone

Au La

Cu Ka

Elemental imaging of the industrial materials is important for defective and quality examination.

Contact pad

Red: 200 cps Blue: 100 cps

Intensity / cps

0

Cu : printed circuit

(Yellow: 1600 cps)

<u>Depth selective elemental imaging</u> (micro SD memory card) <u>Cu Ka image</u>

Analytical modes by Confocal M-XRF

Confocal Micro-XRF setup and sample

X-ray tube

MCBM 50-0.6 B (rtw, Germany)

Mo target, 50 kV, 0.6 mA

<u>SDD and lens</u>

Vortex EX-60 (Hitachi high-tech science co.) Sens. area: 50 mm² <130 eV at Mn Ka

Polycapillary X-ray lens (XOS) :10 mm

Spatial resolution: 14.5 mm @Au La

Steel sheet with plating Zn layer

	Thicknes	s Element	
Coating layer	15 mm	Al Si <u>Ti</u> Sn	
Chem. conversion	2 ~ 3 mm	P <u>Mn</u> Ni Zn	
Plating Zn layer	10 mm	Al Fe <u>Zn</u>	
Steel sheet		C Si P Mn <u>Fe</u>	

Sample cell and experimental procedure

Steel sheet was placed in the sample cell.

NaCl solution (3.5 mass%) was filled in the sample cell.

Elemental maps in 0-24 hours (after one day)

Scanned distance / mm

Elemental maps in 96-120 hours (after 5 days)

Scanned distance / mm

Elemental maps in 120-144 hours (after 6 days)

Scanned distance / mm

Fe and Zn were dissolved and enriched inside the blister.

Elemental maps in 192-240 hours (after 9-10 days)

Scanned distance / mm

Dissolved Fe, Zn, and Mn were diffused into the solution.

Elemental maps in 240-288 hours (after 11-12 days)

Zn, Fe and Mn under the blister were diffused in the solution, and enriched near the Kapton film. Corrosion process was successfully visualized.

X-ray fluorescence imaging

Scanning type XRF imaging

Full Field type XRF imaging

Primary X-rays

2D detector

- Micro x-ray beam is created.
- XRF image is obtained with high spatial resolution.
- Scanning process needs a long acquisition time.
- X-rays irradiate a large area of a sample.
- X-ray camera is applied for taking x-ray images (gray scale image).

- WD-XRF imaging spectrometer
- ED-XRF imaging camera

Conventional WD-XRF

Concept of WD-XRF imaging spectrometer

Previous results were reported in the following papers:

K. Tsuji, et al, Anal. Chem., 83 (2011) 6389-6394.

K. Tsuji. et al. Spectrochim. Acta, Part B, 83-84 (2015) 43-53.

WD-XRF imaging spectrometer

Based on Rigaku RIX-1000

Elemental images of 1 Euro coin

Energy resolution

WD-XRF imaging spectrometer

HiPix-3000(Rigaku)

- 2D Hybrid Pixel Array Detector
- Sensitive area : 77.5 x 38.5 mm
- Pixel size : 100 x 100 mm
- Pixels : 775 x 385 pixels
- Dimensions : 147(W) x 93(H) x 180(D) mm

WDXRF imaging of Br in electronic circuit card

Mo target 50 kV , 40 mA in air

The sample was measured in 27 segments.

Exposure time at each segment: 5 s

Total exposure time: 135 s

WDXRF imaging of Cu in electronic circuit card

Mo target 50 kV , 40 mA in air

The sample was measured in 27 segments.

Exposure time at each segment: 5 s

Total exposure time: 135 s

WDXRF imaging of Cu, Pb, and Br

The sample was measured in 18 segments.

Exposure time at each segment: 60 s

Total exposure time: 1080 s (x 3)

Cu Ka

Br Ka

30 counts

XRF observation of moving objects

Thin metal films (Ni, Cu in 10 mm thickness) were covered with a paper. Then, they were measured as they were moved.

Element-selective imaging of moving objects

XRF observation of dissolution process

XRF observation of dissolution process

Zn was dissolved and diffused in the HCl solution.
Dissolution speed of Ni was slow.

FF-ED-XRF imaging spectrometer

F. P. Romano, et al., Spectrochimica Acta Part B, 86 (2013) 60–65.

A new X-ray pinhole camera for energy dispersive X-ray fluorescence imaging with high-energy and high-spatial resolution

F.P. Romano^{a,b,*}, C. Altana^{b,c}, L. Cosentino^b, L. Celona^b, S. Gammino^b, D. Mascali^b, L. Pappalardo^{a,b}, F. Rizzo^{b,c}

^a IBAM, CNR, Via Biblioteca 4, 95124 Catania, Italy

^b INFN-LNS, Via S. Sofia 62, 95123 Catania, Italy

^c Dipartimento di Fisica e Astronomia, Università di Catania, Via S. Sofia 64, 95123 Catania, Italy

Fig. 2. Energy response of the CCD detector. CCD counts indicate the raw and digitized data generated by the analog to digital converter of the CCD.

Fig. 3. The fluorescence spectrum of Fe measured using the X-ray pinhole camera. The energy resolution is 157 eV at Fe–K α line.

FF-ED-XRF imaging spectrometer

F. P. Romano, et al., Anal. Chem., 86 (2014) 10892.

Figure 9. A Nasca pottery investigated in the macro-FF-XRF setup.

Bin=2, readout speed = 1MHz, Spatial reso. = 170 mm, Energy reso. = 180 eV Measurement time = 5000 s

FF-ED-XRF imaging spectrometer at OCU

Andor iKon-M

- Backside illumination type
- Pixels : 1024 pixel x 1024 pixel (512 x 512), (256 x 256)
- Pixel size : 13 mm x 13 mm
- Area : 13.3 mm x 13.3 mm
- Cooling : 90 °C

Photon counting

Energy resolution

- Mo tube : 30 kV, 2 mA
- Pure metals: Ag, Au, Co, Cu, Fe, Ni, Ti, Zn
- Exposure time: 1s / frame
- Total frames: 100 frames
- 256 pixel x 256 pixel

Spatial resolution

2 s / frame, 600 frames (1200 s), Mo: 30 kV, 2 mA, with difference effective pixels

Spatial resolution

FF-ED-XRF imaging of Cu and Ni

- Mo tube: 20 kV, 2 mA
- Cu-Ni sample : Ni film (50 mm) on Cu
- Exposure time: 1 s / frame
- Total frames: 600 frames (= 600 s)
- Effective pixels: 256 pixel x 256 pixel

Simultaneous elemental imaging was possible.

FF-ED-XRF imaging of electronic circuit card

FF-ED-XRF imaging of lacquer art craft

- Mo: 30kV, 10 mA
- Exposure time: 0.1 s / frame
- Total frames: 9000 frames (15 min.)
- 256 pixel x 256 pixel

FF-ED-XRF imaging of lacquer art craft

13.3 mm

10

counts

Comparison of XRF imaging techniques

	Scanning type		FF (projection) type		
	SEM-EDS	(C)-M-XRF	WDXRF	ED-camera	
Source	Electrons	X-ray tube	X-ray tube	X-ray tube	
scanning	Electron beam scanning	Sample scanning	Without scan (but angle scan)	Without scan	
Spatial resolution	1 m m	10 mm	~ 300 mm	< 50 mM	
Energy resolution	~ 140 eV	~ 140 eV	< 70 eV (~ 40 eV)	~ 150 eV	
Advantage	High spatial resolution	3D analysis in C- M-XRF	Short exposure time (~ 1 s) High energy-reso.	Simultaneous multi- elemental imaging	
Drawback	Vacuum Damages Electrical conductivity	Long acquisition time for large sample	Large equipment Ange scan	Photon counting for weak x-rays Long acquisition time	

Summary

- Scanning-confocal M-XRF was applied for observing the corrosion process of the steel sheet in the solution.
- WD-XRF imaging spectrometer was developed. It was applied for elemental imaging of moving objects and dissolution process of metals.
- FF-ED-XRF imaging with CCD camera was developed. Analytical performance and its applications were shown.

Acknowledgements

We appreciate Rigaku for cooperation of WDXRF imaging experiment. We also appreciate for kind suggestions from Dr. Romano for FF-XRF imaging camera.