

Plan for X- and g-ray production at the Fermilab Accelerator Science & Technology (FAST) facility

Philippe Piot,

Department of Physics and Northern Illinois Center for Accelerator & Detector
Development, Northern Illinois University, DeKalb IL 60115
Accelerator Physics Center, Fermi National Accelerator Laboratory, Batavia IL 60510

CHANNELING 2015

7th International Conference
Charged & Neutral Particles Channeling Phone

Credits

Channeling radiation:

- **# Fermilab**
- FNAL: D. Edstrom, J. Ruan,T. Sen, A. Romanov, V. Shiltev,
- NIU: A. Halavanau, D. Mihalcea
- HZDR (Dresden): W. Wagner
- U. Sokendai: J. Hyun

ROSSENDORF

Gamma-ray development

- FNAL: J. Ruan,
- NIU: A. Halavanau, A. Khizakhov,
 D. Mihalcea, M. Urfer
- RadiabeamTechnologies:A. Murokh, B. Jacobson

ZENTRUM DRESDEN

*Graduate students

The FAST/IOTA complex

~300-MeV e- linac section

- FAST-IOTA facility complex includes:
 - IOTA (integrable-optics test accelerator) ring,
 - An electron linear accelerator (that nominally serves as an electron injector to IOTA),
 - A proton source & injector for IOTA
- Facility is located in the New Muon Lab (NML) building

http://fast.fnal.gov/

test beamlines

X- & g-ray programs at FAST

- Channeling radiation:
 - Demonstrate highbrilliance X-ray
- Application: imaging

- Inverse Compton Scat.:
 - Demonstrate highbrilliance g ray
- Application to security

Overview of the FAST facility and its X- & g-ray programs

Electron Source

- e- source based on a radiofrequency (RF) gun coupled to
 - A high-power laser
 - A high-quantum efficiency photocathode (Cs₂Te)
- Capable of forming highbrightness electron beams arranged as bunch trains

Value	Unit
0.02 - 3.2	nC
1	<u>ms</u>
3	MHz
1-3000	
1-5	Hz
	0.02 – 3.2 1 3 1 – 3000

Imped 50 Ohm

1.2 ms

Acceleration to ~300 MeV

 The 50-MeV beam is accelerated in a cryomodule (a string of 8 SCRF cavities)

 Produced stable beams with energies up to 300 MeV arranged as macropulses.

Expected Spring 2017.

Expected spectrum at 43 MeV

Expected Spectrum of CR including bremsstrahlung

Acceleration to 50 MeV (done June 2016)

- e- source is coupled to two SRF cavities
- Beam accelerated to 50 MeV (5/17/16)
- Characterization and beam control coupling machine control system to simulation (6/4/16)
- Measured beam emittances higher than expected (optimization still needed)

Issues & Lessons learn so far

- Channeling radiation occurred in parallel to commissioning of the 50 MeV injector
 - Injector performed very reliably
 - Dark current was a limiting factor:
 - Dark current had same energy as the main beam.
 - chicane scraping led to large background (bremss.)
 - Acceptable beam parameters were produced

$$\sigma_{\perp} \simeq 100 \ \mu \text{m} \ \sigma_{\perp}' \simeq 300 \ \mu \text{rad}$$

Detector not fully understood

Results so far (not understood!)

- So far did not observe any channeling during acquisition.
- As posteriori analysis (summing large number of spectra) show some spectral lines.
- does not correspond to our simulations!
- Need to reconfigure experiment for possible run later in the year.

Promises of ICS @FAST

properties of frequency upshifted photon beam

[F. Hartemann et al. PRSTAB **8**, 100702 Compton ESRF Undulator Spring 8 Undulate Harmonic Generation ALS U5.0 NSLS X1 (2005)Cu-K μ-Focus 10-3 10-2 10-1 100 101 102 103 104 X-Ray Energy (keV)

scattered (upshifted)

photon beam

electron

1031

1029

1027

1025

1023

1021

1019

1017

1015

1013

1011

109

Peak Brightness [N₂/(s mm² mrad²

beam

[adapted from OSA]

Colliding laser

P. Piot, Channeling 2016 9/25-30, Sirr

Motivation

- Overarching goal: demonstrate and characterize a highflux g rays using ICS
- Do not focus on electron source development:
 - use an available state-of-the-art superconducting linac: ultra-stable electron beam with controllable parameters (energy, energy spread, emittance, charge,...)
- Use an available electron beam to perform high-rep rate ICS
 - upgraded laser system to provide necessary energy and rep. rate for high-rep-rate ICS
- R&D is complementary to ongoing R&D in, e.g. LPWFA

Principle

 Laser pulse is injected in a high-finesse optical cavity to build up its energy (coherent stacking)

cavity could be adapted for use with LPWFAs

Comparison of simulation codes

- Detailed modeling of the ICS interaction with 2 programs (classical vs quantum electrodynamics descriptions)
- codes in agreement + confirm our earlier
 brightness estimate of ~ 10¹⁸ (for 1 e- bunch)
 corresponding to 10²² for 15000 e- bunches/sec)

Parameter	CAIN 2.35	"Brown"	Unit
Peak Brightness	1.05×10^{18}	1.02×10^{18}	photons/[s· (mm-mrad) 2 · 0.1% BW]
Dose	1.66×10^{7}	2.05×10^{7}	photons
Bandwidth	1.66	0.71	% For 1 bunch/sec
Divergence (rms) x/y	0.92/1.21	1.07/1.47	mrad (we can go up to
Pulse duration (rms)	2.31	2.07	ps 15,000 bunches/sec)
Transverse size (rms) x/y	9.83/9.51	9.83/9.45	$ m \mu m/\mu m$

classical

QED

Parametric studies

 parametric investigation of g-ray properties to guide on a possible interactionregion design

radiation parameters versus beam emittance for 5 cases of electron-beam transverse size

P. Piot, Channeling 2016 9/25-30, Sirmione-Desenzano del Garda, Italy

g-ray brightness optimization

Final focus

- Interaction point (IP) simulated
 - Beam/laser spot sizes ~ $10~\mu\mathrm{m}$

Challenges with Coherent enhancement cavity R&D

- Repetition rate is 3 MHz (i.e. 100 m bunch separation).
- Need to design long-delay cavity (with many reflections – Heriott cell type)
- Gain achieved so far ~50

Interaction area

- UHV chamber
- final-focus quadrupole magnets
- beam diagnostics:
 - beam size measurement
 - laser/e- beam synchro.

Chambers

ICS timeline

- Currently upgrading laser system (one amplifier to ~mJ level)
- Acceleration to 300 MeV in FY17
- Installation of ICS experiment planned in 2018
- Preliminary test of subsystems (quad + diagnostic) will occur before then and as time permits
- First collision expected early 2019

Summary

- The FAST facility at Fermilab could support R&D on X and gamma ray sources respectively based on channeling and inverse Compton scattering
- Channeling progress:
 - During commissioning of the 50-MeV injector we attempted a X-ray channeling experiment
 - Follow up experiment once the FAST facility beamline is finished
- ICS progress
 - A gamma-ray experiment in preparation
 - First scattering experiments planned early 2019

Support

- The channeling work was seeded by the DARPA AXIS N66001-11-1-4196 to Vanderbilt University & NIU
- The gamma-ray source development is funded by the Department of Homeland Security under DNDO Dn-077-ARI-94 to NIU
- Fermilab is operated by the Fermi Research
 Alliance LLC under contract No. DE AC02-07CH11359 with the Department of Energy