Concept of Tunable, High Power Source of Coherent THz Radiation

I.V. Konoplev, H. Zhang, A. Lancaster, G. Doucas
JAI, Department of Physics, University of Oxford, OX1 3RH
Overview

• Introduction
 – Requirements to THz sources
 – Available THz sources
 • Not RF LINAC driven
 • RF LINAC driven
 • Challenges to generate HP THz radiation

• HP THz Smith-Purcell tuneable oscillator experiments
 ➢ Numerical simulations
 ➢ Preliminary results

• Conclusion and Future work
Introduction

• **Requirements to the radiation sources**
 – Broadband (from 0.1THz to 10s of THz), short-pulse (fs), high-field intensity
 – Tuneable, single mode, single frequency
 – High Average Power for material studies and material quality control

• **Requirements to source**
 – Compact
 – Energy efficient and easy to run
 – If not CW - capable of high-repetition rate

• **Environment requirement**
 – Not sensitive to surrounding environment
 – No or low level of ionising radiation and material activation
 – Low DC Voltage
Available THz sources
(solid state, not LINAC based)

• **Solid State Oscillators** (High frequency Gunn, IMPATT and TUNNET diodes produce 100 mW@100GHz but falls as $1/f^2$ and at 400 GHz is typically in the range 0.1 to 1 mW)

• **Gas and Quantum Cascade Lasers** (typically up 100 mW operating in range from around 0.5THz to 5THz ,
 – low temperature, large magnetic fields are required for QCLs
 – CO$_2$ laser is required to pump the THz Gas laser

• **Laser Driven THz Emitters**
 (operating in 0.2THz to 2THz with average power from nano- to microwatts)
Available THz sources
(vacuum tubes, not RF LINAC based)

Vacuum electronics:
• **Gyrotrons** (not tuneable, high >10T magnetic fields is required)

• **BWO** (in frequency range from 30GHz till 1.2THz, power up to 100 mW@1.2THz)

• **Orotrons** (Planar Smith-Purcell oscillators up to 1THz, power from 100mW@1THz to 1W@0.3THz)
96GHz Maser based on 2D PSL

Electron bunch formation

D = 20 mm
\(\lambda = 3.2 \) mm

Bunching of continuous beam inside cavity

Output power from Cherenkov maser based on 2D periodic lattice

Electron Beam 300kV, 100A

\(\eta \sim 30\% \)

Magnetic Field Amplitude (T) vs. Average Power (MW)

Output spectrum (dB) vs. Frequency (GHz)

Electron bunch formation diagram with radius and length measurements.

Graph showing the relationship between time (ns) and power (MW).

Graph showing the output spectrum in decibels (dB) vs. frequency in GHz.
Below 10MeV LINAC THz sources

Coherence is insured by either installing a cavity or via pre-bunching electron beam making dimensions of the bunches smaller as compared with operating wavelength.

\[
\left(\frac{dI}{d\Omega d\omega} \right)_{Ne} = \left(\frac{dI}{d\Omega d\omega} \right)_{sp} \cdot \left[N_e + N_e(N_e - 1) \left| F(\omega) \right|^2 \right]
\]
Available LINAC based sources

- Coherent Synchrotron radiation sources
- Free Electron Lasers
- Coherent Smith-Purcell radiation (cSPr)
- Coherent Diffraction and Transition radiation
Smith-Purcell radiation

Dispersion relation links radiated wavelength and observation angle θ

$$\lambda = \frac{\ell}{m} \left(\frac{1}{\beta} - \cos \theta \right)$$

$$(\frac{dI}{d\Omega})_{sp} = F \exp\left(- \frac{2x_0}{\lambda_e} \right)$$

$$\lambda_e = \frac{\lambda}{2\pi} \frac{\beta \gamma}{\sqrt{1 + \beta^2 \gamma^2 \sin^2 \theta \sin^2 \phi}}$$

For small θ and ϕ such that $(\theta \phi) << 1/\gamma$

1/ x_0 is the distance between beam and the periodic structure
2/ λ_e is the electron beam - EM wave coupling parameter
3/ larger x_0 smaller energy transfer to EM wave

$\lambda_e = \frac{\lambda \gamma \beta}{2\pi}$ 10MeV beam should be 0.1mm away to generate radiation at 10THz
Numerical studies of grating (500 μm) and blank

Comparison of electric fields time dependence at observation point (CP) locate above the centre of the grating observed from blank (dashed blue line) and 500um grating (solid red line). Two models are identical except for the corrugation. The differences between red and blue line can be attributed to the corrugation.
Numerical studies of grating (500\,\mu m) and blank

Spectra from blank (blue dashed line) and 500\,\mu m grating (solid red line)

Black line over green shows a 20 points average which is similar to finite acceptance angle.
Numerical studies of cSPr

PiC modelling of cSPr radiation from 500um planar grating

E_z is parallel to electron beam trajectory and located in x-z plane.

The divergence angle 2φ (approx. 6°) of the cSPr from planar 1D grating of 500um period. Future gratings can be designed to minimise the divergence i.e. simplify the optics required to collect the signal.
Spectrum of coherent Smith-Purcell radiation from single bunch (black line) and trains of 4 micro-bunches having bunch-bunch separation 0.5mm (0.6THz) and 0.6mm (0.5THz) while all 3 have the same total charge.
Spectrum of coherent Smith-Purcell radiation

Single bunch: the same longitudinal dimension as a micro-bunch and total charge of the whole train

Problems:
1/ Focusing; 2/ Transportation; 3/ Beam halo; 4/ Bringing close to the grating

Advantages:
1/ Broad spectrum; 2/ No need for tuning

Train of micro-bunches

Problems:
1/ Generation; 2/ Control and tuning; 3/ Narrow spectrum $\Delta \omega \sim 1/N$

Advantages:
1/ Space charge problem solved; 2/ No limitation of average power associated with the space charge; 3/ Tunability
Numerical studies of cSPr

Micro-bunched beam

- 8ps
- 5ps
- 3ps
- 2.5ps
- 1.34ps

Single bunched beam

- Single bunch 10nC, 8MeV: 300ps, 1.5ps

Micro-bunched beam 10nC, 8MeV
Modulation: 1.34ps, 2.5ps, 3ps, 5ps, 8ps
Experimental studies of cSPr at LUCX
Generation of pre-bunched beam for THz radiation generation at LUCX
Spectrum of coherent Smith-Purcell radiation

Interferometer installed at LUCX

Spectrum of radiation measured at $\theta = 90^\circ$ detector position
Two-bunch interferogram of coherent Smith-Purcell radiation

Study of two-bunch interferogram: each bunch generates coherent radiation which interfere creating typical interference patterns
Conclusion

- Brief overview of THz radiation sources
- Steps toward coherent THz radiation source
- Concept of new THz source of coherent radiation based on cSPr
Thank you
Pre-bunched beam for THz radiation generation using beam plasma interaction

Beam density distribution. (a) Initial beam charge distribution (Energy=50MeV, total charge=0.5nC, length=1.5mm); (b)-(d) Beam density distribution after propagating 1.8cm through plasmas with different densities (\(\lambda \) is the plasma wavelength).
Source of coherent SP radiation
concept of experiment at LUCX (KEK, Japan)

The $2Q/\omega$ time (EM field decay time inside the cavity) is less as compared with distance between two neighbouring bunches

1/ The $(2Q/\omega)$ time is controlled by additional feedback mirrors
2/ Timing between feedback loop and distance between bunches also can be controlled
3/ Tuning via frequency selection inside feedback loop
Source of coherent SP radiation

Electron bunch having the following parameters:
- 0.8nc
- Bunch length 800fs
- Electron energy 8MeV