

Concept of Tunable, High Power Source of Coherent THz Radiation

I.V. Konoplev, H. Zhang, A. Lancaster, G. Doucas JAI, Department of Physics, University of Oxford, OX1 3RH

Overview

- Introduction
 - Requirements to THz sources
 - Available THz sources
 - Not RF LINAC driven
 - RF LINAC driven
 - Challenges to generate HP THz radiation
- HP THz Smith-Purcell tuneable oscillator experiments
 - Numerical simulations
 - Preliminary results
- Conclusion and Future work

Introduction

- Requirements to the radiation sources
 - Broadband (from 0.1THz to 10s of THz), short-pulse (fs), high-field intensity
 - Tuneable, single mode, single frequency
 - High Average Power for material studies and material quality control

Requirements to source

- Compact
- Energy efficient and easy to run
- If not CW capable of high-repetition rate

Environment requirement

- Not sensitive to surrounding environment
- No or low level of ionising radiation and material activation
- Low DC Voltage

Available THz sources (solid state, not LINAC based)

- Solid State Oscillators (High frequency Gunn, IMPATT and TUNNET diodes produce 100 mW@100GHz but falls as 1/f² and at 400 GHz is typically in the range 0.1 to 1 mW)
- Gas and Quantum Cascade Lasers (typically up 100 mW operating in range from around 0.5THz to 5THz ,
 - low temperature, large magnetic fields are required for QCLs
 - CO₂ laser is required to pump the THz Gas laser
- Laser Driven THz Emitters

(operating in 0.2THz to 2THz with average power from nano- to microwatts)

Available THz sources (vacuum tubes, not RF LINAC based)

Vacuum electronics:

- Gyrotrons (not tuneable, high >10T magnetic fields is required)
- **BWO** (in frequency range from 30GHz till 1.2THz, power up to 100 mW@1.2THz)

• **Orotrons** (Planar Smith-Purcell oscillators up to 1THz, power from 100mW@1THz to 1W@0.3THz)

96GHz Maser based on 2D PSL

Below 10MeV LINAC THz sources

Coherence is insured by either installing a cavity or via pre-bunching electron beam making dimensions of the bunches smaller as compared with operating wavelength.

$$\left(\frac{dI}{d\Omega d\omega}\right)_{N_e} = \left(\frac{dI}{d\Omega d\omega}\right)_{sp} \cdot \left[N_e + N_e(N_e - 1) |F(\omega)|^2\right]$$

Coherent radiation

Available LINAC based sources

Coherent Synchrotron radiation sources
 Free Electron Lasers
 Coherent Smith-Purcell radiation (cSPr)

 Coherent Diffraction and Transition radiation

Smith-Purcell radiation

$$\left(\frac{dI}{d\Omega}\right)_{sp} = F \exp\left(-\frac{2x_0}{\lambda_e}\right)$$
$$\lambda_e = \frac{\lambda}{2\pi} \frac{\beta\gamma}{\sqrt{1 + \beta^2 \gamma^2 \sin^2 \theta \sin^2 \phi}}$$

1/ x_0 is the distance between beam and the periodic structure

2/ λ_e is the electron beam - EM wave coupling parameter **3/** larger x_0 smaller energy transfer to EM wave

For small θ and ϕ such that $(\theta \phi) << 1/\gamma$

 $\lambda_e = \frac{\lambda \gamma \beta}{2\pi}$ 10MeV beam should be 0.1mm away to generate radiation at 10THz

x (mm)

Numerical studies of grating (500 μ m) and blank

Numerical studies of grating (500 μ m) and blank

Numerical studies of cSPr

PiC modelling of cSPr radiation from 500um planar grating

The divergence angle 2φ (approx. 6°) of the cSPr from planar 1D grating of 500um period. Future gratings can be designed to minimise the divergence i.e. simplify the optics required to collect the signal.

Spectrum of coherent Smith-Purcell radiation

Spectrum of coherent Smith-Purcell radiation from single bunch (black line) and trains of 4 micro-bunches having bunch-bunch separation 0.5mm (0.6THz) and 0.6mm (0.5THz) while all 3 have the same total charge.

Spectrum of coherent Smith-Purcell radiation

Single bunch: the same longitudinal dimension as a micro-bunch and total charge of the whole train

Problems:

1/ Focusing; 2/ Transportation; 3/ Beam halo; 4/ Bringing close to the grating

Advantages:

1/ Broad spectrum; 2/ No need for tuning

Train of micro-bunches

Problems:

1/ Generation; 2/ Control and tuning; 3/ Narrow spectrum $\Delta \omega \sim 1/N$ Advantages:

1/ Space charge problem solved; 2/ No limitation of average power associated with the space charge; 3/ Tunability

Numerical studies of cSPr

Micro-bunched beam 10nC, 8MeV Modulation: 1.34ps, 2.5ps, 3ps, 5ps, 8ps Single bunch 10nC, 8MeV: 300ps, 1.5ps

Experimental studies of cSPr at LUCX

Generation of pre-bunched beam for THz radiation generation at LUCX

Spectrum of coherent Smith-Purcell radiation

Two-bunch interferogram of coherent Smith-Purcell radiation

Study of two-bunch interferogram: each bunch generates coherent radiation which interfere creating typical interference patterns

- Brief overview of THz radiation sources
- Steps toward coherent THz radiation source
- Concept of new THz source of coherent radiation based on cSPr

Thank you

Pre-bunched beam for THz radiation generation using beam plasma interaction

Beam density distribution. (a) Initial beam charge distribution (Energy=50MeV, total charge=0.5nC, length=1.5mm); (b)-(d) Beam density distribution after propagating 1.8cm through plasmas with different densities (λ is the plasma wavelength).

Source of coherent SP radiation

concept of experiment at LUCX (KEK, Japan)

Broadband THz source of cSPr

The 2Q/ω time (EM field decay time inside the cavity) is less as compared with distance between two neighbouring bunches

1/ The (2Q/ω) time is controlled by additional feedback mirrors
2/ Timing between feedback loop and distance between bunches also can be controlled
3/ Tuning via frequency selection inside feedback loop

Source of coherent SP radiation

Electron bunch having the following parameters:

- 0.8nc
- Bunch length 800fs
- Electron energy 8MeV

Erho at OSYS\$MIDPLANE2 @ 71.934 ps tho (mm -30.0 -15 10 15 Erho at CENTERATZC E_r 10 Erho (MV/m) -10 -15 52 54 56 58 60 62 $FFT(E_r)$ Time (ps) Magn, FFT of Erho at CENTERATZ (1) Evaluate FFT, Time Limits:(0.500) -01 ns 30 (kV/m/GHz) 20 Tho 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 Frequency (THz) At (1.438mm, 1.588rad, 0.000m) IVKonoplev RELD

10MeV_500GHz_full-emit_long_slot1m10.m3d

2D Bragg Cylindrical Guide MAGIC3D_64b: 3.2.0

Pa: 888

Mar 13,2013

Emitted ELECTRON CURRENT on CATHODE

on Conductor/Surface CATHODE	IVK
	JAI, University of OXFORD
	c-Smith-Purcell-radiator
	MAGIC3D_64b: 3.2.2
SP test-1i0mm-full modulated-bunch-1i5ps.m3d	Sep 22,2016 Pg: 1428