Nonlinear Optics of the UV TW Laser Beam

V.D. Zvorykin (zvorykin@sci.lebedev.ru)

P.N.Lebedev Physical Institute of the Russian Academy of Science

P.N. Lebedev Physical Institute of Russian Academy of Sciences National Research Nuclear University MEPhI

The 7th International Conference Channeling 2016 - Charged & Neutral Particles Channeling Phenomena Sirmione – Desenzano del Garda, Italy, September 25-30, 2016

Participants

P.N.Lebedev Physical Institute of the Russian Academy of Science

P.N. Lebedev Physical Institute of RAS A.A. Ionin D.V. Mokrousova L.V. Seleznev I.V. Smetanin A.V. Shutov E.S. Sunchugasheva N.N. Ustinovskii

<u>NRNU MEPhI</u> S. A. Goncharov S.V. Ryabchuk

Outline

- Introduction: Laser beam filamentation ? a "diffractionfree" channeling of photons over the Rayleigh length
 - Multiple filamentation of TW-level, sub-ps UV pulses at Ti:Saphire/KrF GARPUN-MTW laser facility: Supposed mechanism and limitations of the attained ultra-short pulse (USP) energy and beam focusing
- Kerr self-defocusing of filaments in Xe and coherent narrow-angle IR emission
- Filaments regularization by means of amplitude masks
- Conclusions

Self-focusing and filamentation history

• Suggested by Askar'yan more than 50 years ago (*Sov. Phys. JETP*, 1962, <u>15</u>, 1088) a self-focusing of laser radiation in transparent solid dielectrics, liquids and gases was investigated through decades.

• A "new age" began with a development of extremely powerful Ti: Sapphire lasers. Kerr self-focusing of the IR USP radiation ($\lambda \sim 800$ nm) produces filament-like light and plasma channels of sub-mm diameter that propagates in atmospheric air over tens and even a few hundred meters (Braun et al. *Opt. Lett*, 1995, <u>20</u>, 73); nowadays the filamentation has a big room for applications.

• For the UV USP with peak powers up to $P \sim 10$ TW obtained in 1990s with KrF lasers ($\lambda = 248$ nm) filaments were not registered. In our experiments at Ti:Saphire/KrF GARPUN-MTW laser facility with $P \sim 1$ TW multiple filamention was observed (Zvorykin et al, *Quantum electron*. 2010, <u>40</u>, 381). Parameters of UV filaments found in our case differ of those in the IR.

Standard filamentation model

Wavelength <i>I</i> , nm	800	248
$n_2, \text{ cm}^2 \cdot \text{W}^{-1}$	(2.8–3.0)·10 ⁻¹⁹	(8–10)·10 ⁻¹⁹
<i>P_{cr}</i> , GW	3.4–3.6	0.1–0.12
$O_2(W_i = 12.06 \text{ eV}): K; \sigma_K, \text{ s}^{-1} \cdot (\text{cm}^2 \cdot \text{W}^{-1})^K$	8; 2.8·10 ⁻⁹⁶	3; 1.4.10-28
N ₂ (W_i =15.58 eV): K; σ_K , s ⁻¹ ·(cm ² ·W ⁻¹) ^K	11; 6.3·10 ⁻¹⁴⁰	4; 3.2 ·10 ⁻⁴⁴

Amplification of a train of ps, sub-TW UV pulses at Ti:Saphire/KrF GARPUN-MTW Laser

Zvorykin et al, *Quantum electron*. 2014, <u>44</u>, 431.

Filaments registration

filament produced by 0.2 mJ, 100-fs USP has 20 cm length which is much more than diffraction (Rayleigh) length of a focused beam.

Kerr self-focusing produces multiple filamentation of a superctitical USP beam

• A filamentation pattern was observed at $L \ge L_F \approx 15$ m behind the final amplifier. 300 filaments of 240–340 mm diameter contained 30% of the total USP energy. Peak intensity in filaments $I_f \sim 2 \cdot 10^{11}$ W/cm² and energy fluence $\varepsilon_f \sim 0.2$ J/cm² are in contradiction with a "standard model", and reveal the dominant role of resonance processes, i.e. (2+1) REMPI of O₂ and coherent SRS at N₂ rotational transitions (Zvorykin et al., *Appl. Optics*, 2014, <u>53</u>, I31; Smetanin et al., NIMB, 2016, <u>369</u>, 87).

• Suppression of filamens is required to reduce losses in KrF gain medium and improve laser beam focusing.

Suppression of the USP filamentation in Xe

• 2.5-m length pressure cell was pumped out, filled with atmosphere air or Xe at ≤ 1 atm.

• 2-photon resonance of $6p[1/2]_0$ Xe state with KrF laser light produces a large resonantly-enhanced *negative* nonlinear refraction index (Lehmberg et al, Opt. Commun, 1995, <u>121</u>, 78) – a unique feature for self- defocusing of filaments.

Self-defocusing of multiple filaments in Xe ($L_c > L_F$)

- > Filaments are formed behind an air-filled cell set at $L_c > L_F$ (20 m).
- Filaments are twice increased behind the vacuum cell.
- Filaments are fully defocused behind Xe-filled cell!

Xe prevents filamentation of a supercritical beam ($L_c < L_F$)

- > Xe-filled cell set at $L_c < L_F$ distance prevents formation of filaments in a supercritical UV USP laser beam at $L > L_F$.
- > Monochromatic IR emission at 828-nm wavelength produced buy UV filaments corresponds to Xe transition $6p[1/2]_0 \rightarrow 6s[3/2]_0^1$.
- An interference of IR emission proves that UV filaments are phase-matched.

Coherent IR cone emission of UV filaments

- In a far-field zone IR emission looks like narrow rings around UV filaments; number of rings increases with the USP power. Rings corresponds to the cone emission with an angle θ ≈ 4.10-3 rad to the axis.
- ▶ Four-wave mixing, stimulated hyper-Raman scattering and amplified spontaneous emission at the transition $6p[1/2]_0 \rightarrow 6s[3/2]_0^1$ supposedly contribute to the emission.

Focusing of filamented and compensated beams (F=2.5 m)

Multiple filamentation

0

b 0.2 mrad

 $\theta_{0.1}$ =1.2·10⁻⁴ rad

2

0.000

0.2490

0.4980

0.7470

0.9960

1.245

1.494

1.743

1.992

2.241

2.490

Suppressed filamentation

Filaments regularization

A regular filaments distribution is required to produce plasma channel arrays in air for MW waveguides and antennas (Marians et al., *Phys. Plasmas*, 2013, <u>20</u>, 023301; Zvorykin et al., *Appl. Optics*, 2014, 53, I31)

Diffraction of the UV USP $N_F >> 1$

N_F<<1

Diffraction patterns for different Fresnel number $N_F = a^2/\lambda L$

Diffraction initiates filaments

10 mm

Filaments regularization

- Amplitude masks allows to regularize filaments distribution.
- The optimal mask cell should transmit beam power $P_{mask} \ge P_{cr}$
- The distance from the mask to regular filaments plane should be $L_{mask} >> a^2/\lambda$

10 mm

20 mm

CONCLUSIONS

- The variety of nonlinear effects were investigated at Ti:Sapphire/ KrF laser facility GARPUN-MTW in a direct amplification of sub-picosecond UV pulses up to TW peak power.
- An effective suppression of multiple filamentation of the supercritical UV laser beam was demonstrated in Xe. A two-photon resonance of laser radiation with 6p[1/2]₀ state of Xe ensured Kerr self-defocusing of a few hundred filaments.
- UV filaments in Xe produced a narrow-angle monochromatic coherent cone emission at 828-nm wavelength via a four-waves mixing, stimulated hyper-Raman scattering and amplified spontaneous emission at the transition 6*p*[1/2]₀→6*s*[3/2]₀¹.
 The regular arrays of filaments were produced by means of amplitude masks.