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Outline	
Introduction: Laser beam filamentation � a “diffraction-
free” channeling of photons over the Rayleigh length 

 Multiple filamentation of TW-level, sub-ps UV pulses at 
Ti:Saphire/KrF GARPUN-MTW laser facility:  Supposed 
mechanism and limitations of the attained ultra-short pulse 
(USP) energy and beam focusing 

Kerr self-defocusing of  filaments in Xe and coherent 
narrow-angle IR emission 

Filaments regularization by means of amplitude masks 
Conclusions 



Self-focusing and filamentation history 
•   Suggested by Askar’yan more than 50 years ago (Sov. Phys. 
JETP, 1962, 15, 1088) a self-focusing of laser radiation in 
transparent solid dielectrics, liquids and gases was investigated 
through decades. 
•  A “new age” began with a development of extremely powerful 
Ti: Sapphire lasers. Kerr self-focusing of the IR USP  radiation (λ 
~ 800 nm) produces filament-like light and plasma channels of 
sub-mm diameter that propagates in atmospheric air over tens 
and even a few hundred meters (Braun et al. Opt. Lett, 1995, 20, 
73); nowadays the filamentation has a big room for applications. 
•  For the UV USP with peak powers up to P ~ 10 TW obtained in 
1990s with KrF lasers (λ = 248 nm) filaments were not registered. 
In our experiments at Ti:Saphire/KrF GARPUN-MTW laser 
facility with P ~ 1 TW multiple filamention  was observed 
(Zvorykin et al, Quantum electron. 2010,  40, 381). Parameters of 
UV filaments found in our case differ of those in the IR.  



Standard filamentation model 
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Wavelength l, nm 800	 248	
n2,  cm2·W-1 (2.8–3.0)·10-19 (8–10)·10-19 
Pcr , GW 3.4–3.6 0.1–0.12 
O2 (W i=12.06 eV): K;  σK , s-1·(cm2·W-1)K 8;  2.8·10-96 3;  1.4·10-28 
N2 (W i=15.58 eV): K;  σK , s-1·(cm2·W-1)K 11; 6.3·10-140 4;  3.2·10-44 
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Kerr self-focusing Plasma defocusing 

Critical power 

The collapse is stopped when plasma 
defocusing balances Kerr focusing  

Scaling for filament parameters : 

Scaling formulas and simulations (PRL, 2002, 88, 
135003) gives w0 ~ 100 mm,  I~1013 W/cm2, r ~1016 ÷ 
1017 cm-3 for both UV and IR wavelengths. 



Amplification of  a train of ps, sub-TW UV pulses at 
Ti:Saphire/KrF GARPUN-MTW Laser 

F=6.75 m; NA=1.5·10-2 
F=60−100 m; NA=(1.5−2.5)·10-3 

Single USP: E1 ≤ 1 J; τp < 1 ps; P1 ~ 1 TW; train : E ≤ 2 J; 
P1:P2:P3…=3:5:1.5:0.5…, ∆t =3–5 ns 
Zvorykin et al, Quantum electron. 2014,  44, 431. 



Filaments registration 

Glass  fluorescence under UV irradiation was 
measured with Ti: Sapphire front-end. A single 
filament produced by 0.2 mJ, 100-fs USP has 20 
cm length which is much more than diffraction 
(Rayleigh) length of a focused beam.   



E1 = 0.23 J; P1 ≈ 2000×Pcr 

Kerr self-focusing produces multiple  filamentation of a superctitical USP beam	

•  A filamentation pattern was observed  at  L ≥ LF ≈15 m behind the final 
amplifier. 300 filaments of 240–340 mm diameter contained 30% of the total USP 
energy. Peak intensity in filaments If  ~ 2·1011 W/cm2 and energy fluence εf ~ 0.2 
J/cm2  are in contradiction with a “standard model”, and reveal the  dominant 
role of resonance processes,  i.e. (2+1) REMPI of O2 and coherent SRS at N2 
rotational transitions (Zvorykin et al., Appl. Optics, 2014, 53, I31; Smetanin et 
al., NIMB, 2016, 369, 87).  
•  Suppression of  filamens is required to reduce losses in KrF gain medium and 
improve laser beam focusing. 
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Suppression  of the USP filamentation in Xe	

•  2.5-m length pressure cell was pumped out, filled with atmosphere air or Xe  
at ≤ 1 atm. 
•  2-photon resonance of 6p[1/2]0  Xe state with KrF laser light produces a large 
resonantly-enhanced negative nonlinear refraction index (Lehmberg et al, Opt. 
Commun, 1995, 121, 78) − a unique feature for self- defocusing of filaments. 



Self-defocusing of multiple filaments in Xe (Lc> LF) 

Ø  Filaments are formed behind an air-filled cell set at Lc >LF (20 m).   
Ø  Filaments are twice increased behind the vacuum cell. 
Ø  Filaments are fully defocused behind Xe-filled cell!   

Air Vacuum Xe 



Xe prevents filamentation of a supercritical beam (Lc< LF) 	

c 

Air Xe 
Xe 

Coherent 
emission at 
λ = 828 nm 

Near-field 

Ø  Xe-filled cell set at Lc< LF  distance prevents formation of 
filaments in a supercritical UV USP laser beam at L > LF. 

Ø  Monochromatic IR emission at 828-nm wavelength produced buy 
UV filaments corresponds to Xe transition 6p[1/2]0→6s[3/2]0

1. 
Ø  An interference of IR emission proves  that UV filaments are 

phase-matched.  



Coherent IR cone emission of UV filaments 

Ø  In a far-field zone IR emission looks like narrow rings around UV 
filaments; number of rings increases with the USP power. Rings 
corresponds to the cone emission with an angle θ ≈ 4·10-3 rad to the axis. 

Ø   Four-wave mixing, stimulated hyper-Raman scattering and amplified 
spontaneous emission at the transition 6p[1/2]0→6s[3/2]0

1 supposedly 
contribute to the emission. 



θ0.1=1.2·10-4 rad θ0.1=2.4·10-4 rad 

Focusing of filamented and compensated beams (F=2.5 m) 
Multiple filamentation Suppressed filamentation 

Laser beam with suppressed filamentation has twice less divergence 



Filaments regularization 

 A regular filaments distribution is required to produce plasma 
channel arrays in air for MW waveguides and antennas (Marians et 
al., Phys. Plasmas,  2013, 20, 023301; Zvorykin et al., Appl. Optics, 
2014, 53, I31)  



Diffraction of the UV USP	

10 
 

mm 

Diffraction patterns for 
different  Fresnel number 
NF= a2/λL 

NF>>1 NF ~1 

NF<<1 



Diffraction initiates filaments	



Filaments regularization	

Without mask 

With mask 

• Amplitude masks allows to regularize 
filaments distribution. 
• The optimal mask cell should 

transmit beam power Pmask ≥ Pcr 
• The distance from the mask to regular 

filaments plane should be Lmask>> a2/λ 

a 



CONCLUSIONS	

The variety of nonlinear effects were investigated at Ti:Sapphire/ 
KrF laser facility GARPUN-MTW in a direct amplification of 
sub-picosecond UV pulses up to TW peak power. 
An effective suppression of multiple filamentation of the 
supercritical UV laser beam was demonstrated in Xe. A two-
photon resonance of laser radiation with 6p[1/2]0 state of Xe 
ensured Kerr self-defocusing of a few hundred filaments.  
UV filaments in Xe produced a narrow-angle monochromatic 
coherent cone emission at 828-nm wavelength via a four-waves 
mixing, stimulated hyper-Raman scattering and amplified 
spontaneous emission at the transition 6p[1/2]0→6s[3/2]0

1. 
The regular arrays of filaments were produced by means of 
amplitude masks.  


