ADVANCED GENERATION OF THZ AND X-RAY BEAMS USING COMPACT ELECTRON ACCELERATOR

A.Aryshev^a, R.K.Bhandari^b, A.Deshpande^c, G.Doucas^d, M.Fukuda^a S.Ghosh^b, H.Harrison^d, Y.Honda^{a,h}, D.Kanjilal^b, P.Karataev^e, A.Konkov^f, I.V.Konoplev^d, K.O.Kruchinin^e, A.J.Lancaster^d, K.Lekomtsev^e, G.Naumenko^f, A.A.Ponomarenko^g, A.Potylitsyn^f, D.Yu.Sergeeva^g, A.Seryi^d, M.Shevelev^a, M.N.Strikhanov^g, L.Sukhikh^f, Y.Sumitomo^a, A.A.Tishchenko^g, N.Terunuma^{a,h}, J.Urakawa^a, H.Zhang^d

("Advanced Generation of THz and X-ray" AGTaX collaboration)

^a KEK: High Energy Accelerator Research Organization, Japan

b Inter University Accelerator Centre (IUAC), New Delhi, India

f Society for Applied Microwave Electronics Engineering and Research, Mumbai, India

^d The John Adams Institute, Department of Physics, University of Oxford, UK

^e John Adams Institute at Royal Holloway, University of London, UK

'fTomsk Polytechnic University, Institute of Physics and Technology, Russian Federation

gNational Research Nuclear University (MEPhI), Moscow, Russia

^hSOKENDAI: The Graduate University for Advanced Studies, Japan

Channeling 2016, VIII AGTaX, 30 September, 2016

Outline

- FEL introduction
- THz FEL RF Gun laser system
- Pre-bunched beam dynamics
- Pre-bunched beam diagnostics
- THz resonator
- Conclusion, Plans, Schedule

Additional motivation

$$\frac{d^2W_{tot}^s}{d\omega d\Omega} = \frac{d^2W_{sing}}{d\omega d\Omega} N_e (1 + (N_e - 1) | f_l(\omega)|^2)$$

$$\frac{d^{2}W_{tot}^{s}}{d\omega d\Omega} = \frac{d^{2}W_{sing}}{d\omega d\Omega}N_{e}\left(1 + (N_{e} - 1)\frac{\sin^{2}\left[\frac{N_{b}\omega\lambda_{RF}}{2\beta c}\right]}{\sin^{2}\left[\frac{\omega\lambda_{RF}}{2\beta c}\right]}|f_{l}(\omega)|^{2}\right)$$

"Advanced Generation of THz and X-ray" collaboration started in 2013.

It brings together different communities working on the simulation, generation and experimental investigation of high-brightness THz and Compton X-ray beams.

Based on several MoUs the following research strategy was agreed:

- Construction of a stable and tunable laser system for RF gun development and THz radiation sources tests based on modern technology.
- Build a broad collaborative network among leading institutions worldwide.
- Develop state-of-the-art tunable coherent THz radiation sources on the basis of a compact (preferably table-top) accelerator.

Collaboration experiments were started in 2015 at KEK LUCX.

Seven collaboration meetings were held 2 times a year at almost every collaborator's institutions: KEK – 2013.03, RREPS13 (conference session) – 2013.09, MEPhI – 2014.05, SPbSU – 2014.10, Oxford – 2015.03, RREPS15 (conference session) – 2015.09 and KEK -2016.03.

Future meetings are considered as follows: 2016.09 – Channeling2016 (conference session), 2017.02 – IUAC, 2017.09 – Wuhan University.

Collaboration supported by:

- Leverhulme Trust Network "Advanced Research on Generation of THz and X-ray Radiation" (IN 2015 012)
- JSPS KAKENHI grant numbers 23226020 and 24654076 (Finished April 2016)
- JSPS RFBS bi-lateral research program

Pre-bunched THz FEL introduction

Madey, John, "Stimulated emission of bremsstrahlung in a periodic magnetic field". J. Appl. Phys. 42, 1906 (1971)

Madey, John, Stimulated emission of radiation in periodically deflected electron beam, US Patent 38 22 410,1974

Wavelength of FEL radiation:

$$\lambda(cm^{-1}) = \frac{\lambda_w}{2\gamma^2}(1 + \frac{K^2}{2})$$

 $\lambda_{\rm w}$ – period of undulator (cm) γ =E/E₀ – relativistic factor K=0.93 B₀ $\lambda_{\rm w}$ B – magnetic field in undulator (T)

Simulation of Henry Freund

LUCX beamline and operation modes

Conclusion & Summary

- Following electron beam parameters @ THz station were confirmed:
 - Energy ~ 8.5 MeV
 - Energy spread < 1 % rms</p>
 - Transverse rms beam size @ THz station ~ 500x500 um
 - Bunch length ~ 250 fs (4 micro-bunch average)
 - Number of micro-bunches 4
 - Minimum micro-bunch time separation ~ 250 fs
 - Micro-train charge (4 micro-bunches) ~ 100 pC

Resources

- Skype
 - Aryshev Alexander : alarkek
- E-mails
 - Aryshev Alexander : alar@post.kek.jp

