Influence of a Space Charge Effect in a Femtosecond Electron Beam on Coherent Transition Radiation Spectrum

M. Shevelev1, A. Aryshev1, Y. Honda1,2, N. Terunuma1,2 and J. Urakawa1

1High Energy Accelerator Research Organization (KEK)

2The Graduate University for Advanced Studies (SOKENDAI)

Tsukuba, Ibaraki, 305 – 0801, Japan

30 September 2016
Motivations and goals

Top Goal:

- Development of radiation source based on compact accelerator.

Subgoals:

1. estimation of bunch length in experimental area using ASTRA software for usual settings of LUCX facility;
2. optimization of LUCX parameters for suppression of space charge effect;
3. demonstration how the beam dynamics could influence on coherent radiation of electron bunches.
Report outline:

1. ASTRA simulation;
2. Experimental test;
3. Discussions and conclusion.
ASTRA - A Space Charge Tracking Algorithm written by Klaus Flöttmann from DESY (Germany)1.

The software allows tracking charge particles bunches through different beam line components. Plus it permits to take into account space charge effect.

1K. Flöttmann \textit{ASTRA} (DESY, Zeuthen, 2013)
We could change the next parameters in real experiment:

- solenoid current;
- bunch charge (from a dark current to 400 pC);
- maximum value of an electric field strength on the cathode (from 60 to 120 MV/m);
- laser spot size on the cathode (from $340 \times 420 \, \mu m^2$ to several mm);
- laser pulse duration (from 50 to 200 fs);
- laser pulse energy.
Electron distributions in bunch

Simulation parameters: laser pulse is 100 fs, laser spot size is $450 \times 450 \, \mu m^2$, $Q = 25 \, pC$, $MaxB = 0.225 \, T$, $MaxE = 77 \, MV/m$, $z = 1.31 \, m$.
Simulation parameters: $Q = 25$ pC, $t = 100$ fs, $\sigma_x^l = \sigma_y^l = 0.45$ mm, $\text{MaxE} = 80$ MV/m, RF gun phase = 30 deg., $z = 1.72$ m.
Simulation parameters: MaxB=0.233, t=100 fs, $\sigma^l_x = \sigma^l_y = 0.45$ mm, MaxE=80 MV/m, RF gun phase= 30 deg., $z = 1.31$ m.
Charge scan for different value of maximum amplitude of electric field strength on the cathode

Simulation parameters: MaxB=0.2254, t=100 fs, $\sigma_x = \sigma_y = 0.45$ mm, MaxE=80 MV/m, RF gun phase= 30 deg., $z = 1.31$ m.
Simulation parameters: $Q=25$ pC, $\text{Max}\text{B}=0.2254$, $t=100$ fs, $\sigma_x^l = \sigma_y^l = 0.45$ mm, $\text{Max}\text{E}=80$ MV/m, RF gun phase= 30 deg., $z = 1.31$ m.
Simulation summary

A Magnetic field in solenoid allows compensate transverse size of electron bunches without any effects on longitudinal size;

B Increase of bunch charge using laser technique would increase the space charge forces in bunch;

C The laser pulse length does not influence on bunch length (in reasonable range);

D Transform laser spot size on the photocathode we could suppress space charge effect in electron bunches.

Let’s check!
Electron beam parameters:

- One bunch operation mode;
- Beam energy (RF gun out) is 7.9 MeV ⇒ maximum value of electric field strength on the cathode (MaxE) is 80 MV/m;
- Transverse electron beam size on the luminophore screen is 230 µm (gauss distribution);
- Bunch charge is 60 pC which is measured by FCT.
Form-Factor for coherent transition radiation

Coherent Transition Radiation:

\[
\frac{d^2W_{CTR}}{d\omega d\Omega} = \left[N + N(N - 1) F^2(k) \right] \frac{d^2W_{TR}}{d\omega d\Omega},
\]

where \(F(k)\) is the form-factor. Formfactor for transition radiation was calculated analytically\(^2\):

\[
F(k) = F(\lambda, \theta, \eta, \psi)
= \exp \left[- \frac{2\pi^2}{\lambda^2} \left(\sigma_x^2 \left(\frac{\tan \theta}{\beta} - \cos \psi (\cos \eta \tan \theta + \sin \eta) \right)^2
+ \sigma_y^2 \sin^2 \psi \cos^2 (\eta - \theta) + \frac{\sigma_z^2}{\beta^2} \right) \right],
\]

where is \(\lambda\) the wavelength, \(\theta\) is angle of incidence, \(\eta\) is the angle of observation, \(\psi\) is the azimuth angle of observation.

Orientation dependence of TR

![Graph showing orientation dependence of TR](graph.png)
Laser spot size on the virtual cathode

Relative distance is 12 mm

Relative distance is 13.5 mm
Laser spot size scan
Charge scan: comparison between experimental data and simulation results

Relative distance is 12 mm

Simulation parameters: Q=60 pC, MaxB=0.2335, t=100 fs, $\sigma_x = 344.91 \, \mu m$, $\sigma_y = 420.50 \, \mu m$, MaxE=80 MV/m, RF gun phase=30 deg., $z = 1.31 \, m$.
Fit function: \(y = a + b^c \).

Simulations:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Estimation</th>
<th>Standard Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>-0.84</td>
<td>0.34</td>
</tr>
<tr>
<td>b</td>
<td>29.7</td>
<td>7.83</td>
</tr>
<tr>
<td>c</td>
<td>0.64</td>
<td>0.10</td>
</tr>
</tbody>
</table>

Experimental data:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Estimation</th>
<th>Standard Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>-0.84</td>
<td>0.34</td>
</tr>
<tr>
<td>b</td>
<td>23.95</td>
<td>6.22</td>
</tr>
<tr>
<td>c</td>
<td>0.57</td>
<td>0.10</td>
</tr>
</tbody>
</table>
Relative distance is 13.5 mm

Simulation parameters: $Q=60$ pC, $\text{MaxB}=0.228$, $t=100$ fs, $\sigma^l_x = 727.42 \, \mu\text{m}$, $\sigma^l_y = 0.757.21 \, \mu\text{m}$, $\text{MaxE}=80$ MV/m, RF gun phase= 30 deg., $z = 1.31$ m.
Fit function: $y = a + b^c$.

Simulations:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Estimation</th>
<th>Standard Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>-0.55</td>
<td>0.47</td>
</tr>
<tr>
<td>b</td>
<td>66.92</td>
<td>10.55</td>
</tr>
<tr>
<td>c</td>
<td>0.77</td>
<td>0.08</td>
</tr>
</tbody>
</table>

Experimental data:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Estimation</th>
<th>Standard Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>-0.46</td>
<td>0.19</td>
</tr>
<tr>
<td>b</td>
<td>71.40</td>
<td>5.66</td>
</tr>
<tr>
<td>c</td>
<td>0.79</td>
<td>0.04</td>
</tr>
</tbody>
</table>
Conclusions:

- Astra software allows to estimate the bunch parameters for our experimental conditions;
- In the case of LUCX facility, the space charge effect is the main barrier to produce intense radiation source in THz range;
- Laser technique is not suitable to confirm quadratic dependence of coherent radiation intensity;
- However, laser techniques allows to suppress space charge effect in femtosecond electron bunches.

Future plans:

- We are going to decrease space charge effect in the RF gun using spatial reshaping technique for laser pulse;
- We make optimization of the LUCX settings for the multi-bunches operation mode (two and four bunches).
Thank you for attention!