Crystal Collimation for LHC

Walter Scandale
(CERN, LAL, INFN)

For UA9 Collaboration and the LHC Collimation team
Motivations

Superconducting magnets:
- \(T = 1.9 \text{ K} \)
- quench limit \(\sim 15-50 \text{mJ/cm}^3 \)
- Aperture: \(r = 17/22 \text{ mm} \)

Stored energy in the machine:
- LHC 2012: 145 MJ
- LHC design: 360 MJ

Factor \(\sim 10^9-10^{10} \)

No quench with circulating beam in LHC Run I 2010-2013 and Run II just started

Why do we study a collimation upgrade?

HL-LHC: 700MJ!

Crystal collimation promising approach
Multi-stage cleaning with about 50 collimators per beam, two dedicated insertions.
Main gains:

- **Reduction of inelastic interactions**
- **Reduced off-momentum losses in DS**
- **Less collimators** and with larger gaps
- **Impedance reduction**
- **Similar performance with both p and Pb**
- **Significant improvement of w.r.t. present**

LHC design parameters for Silicon Strip Crystals

Bending 50μrad \(\equiv B \approx 300 \text{ T} @ 7 \text{ TeV}! \)
Main goals

Two crystals installed in the LHC for crystal collimation tests with main goals:

- Demonstrate that **required performance** of crystal channeling can be established
 - Uncertainties in the extrapolations to **unknown energy territories**

- Demonstrate that that crystal collimation can **improve** the **present cleaning efficiency**
 - For both **protons** and **ions** (mainly)

- Demonstrate that **stable crystal channeling** can be established
 - Crystal **alignment** w.r.t. beam envelope **within required angular tolerances**

- Demonstrate that **crystal collimation** can ensure required collimation efficiency during all **operational phase** of the LHC

First experimental tests with low beam intensity started
Observation of channeling for 6500 GeV/c protons in the crystal assisted collimation setup for LHC

by W. Scandale on behalf of UA9 collaboration

For the first time channeling of 6500 GeV/c protons was observed in the LHC

Strong reduction of beam losses in the aligned crystal due to channeling was detected

Critical angle for channeling in (110) Si - $\theta_c = 2.6 \, \mu$rad

Critical radius – $R_c = 11 \, m$
Two silicon crystals were installed for LHC beam collimation

Length is 4 mm and proposed bend angle is 50 μrad
Record crystal parameters: torsion < 1 μrad/mm, miscut < 6 μrad

Strip (110) crystal
Quasi-mosaic (111) crystal

Horizontal collimation
Vertical collimation
Two high-accuracy piezoelectric goniometers

<table>
<thead>
<tr>
<th>Angular range (mrad)</th>
<th>Angular resolution (µrad)</th>
<th>Linear range (mm)</th>
<th>Linear resolution (µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.1</td>
<td>40</td>
<td>5</td>
</tr>
</tbody>
</table>

Goniometer has a complete transparency for the normal LHC operations

Goniometer with crystal is remotely retracted only during the special collimation tests
Trajectory of halo particle deflected due to channeling

For injection at 450 GeV/c

For 6500 GeV/c
Collimation results for injection case at 450 GeV/c

Losses in crystal
Scan of crystal angle

Losses in collimator
Scan of its X position

Loss reduction in crystal due to channeling is about 50

Collimator scan gives the deflected beam distance from the orbit
It corresponds to the crystal bend angle of 65 μrad
Collimation results for collision case at 6500 GeV/c

Loss reduction in crystal due to channeling is about 24
Conclusions

(1) Quality of the crystals and goniometers allows to observe channeling at this record energy in the LHC collider

(2) Good agreement of simulation results with the experiment

(3) LHC beam collimation may be improved with bent crystals Leakage may be decreased