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Plasma acceleration

Linear/Quasi linear regime

Plasma Wakefields:
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Bubble regime

Plasma Wakefields:
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Characteristics of the Betatron Radiation: wiggler analogy

Wiggler parameters:

K2
Aw = 2—%(1 + X +136%)
Kw = 0.934B[T]L[cm]

Ec = 33 Kwhww

The difference between a
wiggler and an undulator
resides in the anharmonic
motion of the oscillating
particles, due to high
transverse velocities, which
mirrors in a broadband
spectrum, while the
spectrum of an undulator is
narrowband.

Plasma wiggler
parameters:
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A method to measure the transverse emittance:

Definitions/1
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A method to measure the transverse emittance:

Definitions/2
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Single particle spectrum

Electron bunch spectrum
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Spectrum discretization
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From the profile to the divergence

wg = wp/\/27

Betatron frequency

Single particle divergence
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Experimental Results: Setup
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Figure: The main laser beam impinges on the supersonic helium jet,
ionizing, channeling and generating plasma wakefields. The electrons,
while accelerating, emit X-ray betatron radiation in the forward direction,
detected by a CCD-X camera. The plasma channel is probed with
interferometry. The electrons are damped out on the screen of the
magnetic spectrometer.



Experimental Results: Plasma channel

Figure: The Rayleigh length of the laser is evaluated zg ~ 100 pm, while
the detected high-intensity /high-density (8 x 10*8cm~3) region, where
the acceleration occurs, is longer than one millimeter.
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Experimental Results: Betatron Spectrum
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Figure: Betatron spectrum detected with a CCD-X camera working in
single photon counting mode together with a polynomial fit.



Experimental Results: Electron Spectrum
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Figure: Electron energy spectrum relative to the electron bunch
accelerated in the bubble regime. Central energy 7o = 320 MeV/, energy
spread 20, /79 ~ 20 %. The outlines of the energy spectrum (up) and of
the beam divergence (right) are reported.



Experimental Results: Beam Profile Reconstruction
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Figure: The beam profile P(r) derived directly from the measured
function R(rz). The rms betatron radius is found o, ~ 0.42 £ 0.04 pm.



Experimental Results: Radiation Beam Distribution
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Figure: Betatron radiation spatial distribution: simulation (left) and
measurement (right). Measured divergence of the radiation beam
Ggqeas = 8.2 4+ 0.3 mrad, simulation value 9;’"’ = 8.5 mrad.



Experimental Results: Distribution of the correlated

divergences
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Figure: Comparison betweeen the measured and the retrieved ©(64)
function. Corresponding values of beam divergence
o =5.9+0.6 mrad and o = 5.2+ 0.6 mrad.



Experimental Results: Emittance Measurement
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Figure: Reconstructed trace space density.

€rgN = 70\/(07/70)20303 + ez, = (0.6 £0.1) mm mrad

Upper Limit: yo0,04%* = (1.5 £0.3) mm mrad



Conclusions

* We summarized typical features of betatron radiation

* We presented a methodology able to reconstruct the transverse trace
space of low emittance electron beams accelerated in the bubble regime.
The single-shot measurement of both the betatron radiation spectrum
and the electron energy spectrum can allow a complete measurement of
the transverse emittance, including the correlation term.

* We reported experimental results obtained at the SPARC-LAB test
facility through the interaction of the ultra-short ultra intense Ti : Sa
laser FLAME with a He gas-jet target.



Thanks for your attention



	Betatron Radiation: Generalities
	Transverse emittance measurement
	Conclusions

