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OUTLINE 
 

Ø Carbon Nanotubes (CNTs) 
Ø Channeling in CNTs 
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CARBON  NANOTUBES  (CNTs)   (1/3) 
 

Ø Types of single-wall nanotubes (SWNTs) 
                 Armchair                      Zig-zag                         Chiral 

 
 
Ø Straight CNT 
 
 

3	

Channeling of protons in radially compressed chiral carbon nanotubes 
A. Karabarbounis, S. Sarros, Ch. Trikalinos 

Channeling 2016 
Italy, September 25-30, 2016 



CARBON  NANOTUBES  (CNTs)   (2/3) 
 

Ø Bent CNT 
  
 
 
 
 
 
 
Ø Radially compressed CNT 
    (at one end) 
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CARBON  NANOTUBES  (CNTs)   (3/3) 
 

Ø Radially compressed CNT 
    (at the centre) 
  
 
 
 
 
Ø Radially compressed CNT 
    (at both ends) 
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CHANNELING  IN  NANOTUBES 
 

Ø Straight & bent CNTs 
      (N.K. Zhevago, N.F. Shul’ga, K.A. Ispirian, S.B. Dabagov, X. Artru and others) 

Ø Radially compressed CNTs 
     (A. Karabarbounis, S. Sarros, Ch. Trikalinos) 

Ø CNTs with random curvature 
     (A.S. Sabirov) 
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MOTIVATION 
 

Ø Channeling of charged particles in carbon nanotubes with 
ideal structure has been investigated thoroughly 

 
Ø Real carbon nanotubes have structure that differs from 

ideal 
 
Ø There is a need for investigation of propagation and 

channeling of charged particles in carbon nanotubes with 
more realistic structure 
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SIMULATION  MODEL   (1/5) 
 

Ø   Potential of a chiral CNT in Doyle-Turner approximation: 
 
 
 

      where:  
      Z = 6  – atomic number of the target atoms, r  – distance from nanotube axis          

and              –  dimensional parameters in the Doyle-Turner approximation: 
 
 
                                    – nanotube radius at distance z from entrance, 
                                                     – nanotube radius,                      

                             – length of the bond between the carbon atoms 
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SIMULATION  MODEL   (2/5) 
 

Ø   Energy losses calculated by phenomenological expression for the 
local stopping power given by Lindhard: 

 
 
     where:        and  υ  – the ion charge and velocity respectively, α – part of close 

collisions ( α = 0.5),         – number of valence electrons per atom,   
      m  – electron mass,              – average excitation potential (                    , 

 Z – atomic number of target atoms) 
 
 
 

Ø   Equations of motion calculated from Newton’s second law as: 
 

                                                                                           (       – proton mass) 
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SIMULATION  MODEL   (3/5) 
 

Ø   Electronic multiple scattering is taken into account after each 
integration step, calculating a normal distribution of the scattering 
angle with standard deviation: 

                                 ( E  and  ΔΕ – the energy and the energy loss at each 
                                                                      integration step, respectively ) 
 

Ø   Initial conditions: 
•   beam angle of incidence = 0 
•   beam well collimated (Δθ = 0) 
•   beam energy spread = 0   (E = 10 MeV) 
 

Ø   Dechanneling of protons: 
     when protons approach CNT’s wal ls a t d is tance:                         
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SIMULATION  MODEL   (4/5) 
 

Ø  Carbon nanotube types used: 
 
 

•   (6,4): 
 
 
 
•   (11,9): 
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SIMULATION  MODEL   (5/5) 
 

Ø   Types of radially compressed carbon nanotubes used: 
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RESULTS   (1/6) 
 

Standard deviation of angular distribution (θx section)  
vs. angle θ of wall slope of compressed CNTs (6,4) 
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RESULTS   (2/6) 
 

Angular and energy distribution - compressed CNTs (6,4)  (θ = 0.005°) 
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RESULTS   (3/6) 
 

Standard deviation of angular distribution (θx section)  
vs. angle θ of wall slope of compressed CNTs (6,4) 
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RESULTS   (4/6) 
 

Standard deviation of angular distribution (θx section)  
vs. angle θ of wall slope of compressed CNTs (11,9) 
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RESULTS   (5/6) 
 

Angular and energy distribution - compressed CNTs (11,9)  (θ = 0.005°) 
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RESULTS   (6/6) 
 

Standard deviation of angular distribution (θx section)  
vs. angle θ of wall slope of compressed CNTs (11,9) 
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CONCLUSIONS 
 

Ø Divergence from ideal structure of CNTs could be 
positive for beam focusing in some cases 

 
Ø Some types of radially compressed CNTs show better 

angular distribution not only from other types, but from 
straight CNT as well 

 
Ø Angular and energy distributions depend on angle and 

type of compression 
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FUTURE PROSPECTS 
 

Ø Channeling in radially compressed carbon nanotube 
bundles 

 
Ø Channeling at different initial conditions (energy, angle of 

incidence, beam collimation, beam spread) 
 
Ø Channeling in other types of compressed carbon 

nanotubes 
 
Ø Channeling in bent carbon nanotubes radially compressed 

at one end   
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Thank you for your attention! 
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