Search for New Physics in $B_s \rightarrow J/\psi \phi$ decay @ LHC

Gaia Lanfranchi **LNF-INFN** SPD:PS HCAL^{M2} HCAL^{M2} HCAL CMS on behalf of LHCb Collaboration including ATLAS-CMS results

CKM Workshop, Rome, September 9th-12th, 2008

Hunt for New Physics @ LHC is started.....

August 22-24th: first injection test.....

.....Yesterday first circulating beams...

.....and we have two complementary ways to catch it:

Direct searches:

we can go directly there

Indirect Searches:

we can look through a telescope..

Mars from Hubble Space Telescope

...If we follow the second way we need to know where to look and a powerful telescope to look into....

<u>B</u> mixing phase in B $\rightarrow J/\psi \phi$ decay:

- Introduction, phenomenology
- Key ingredients for sensitivity:
 - luminosity, cross section, triggers
 - offline selections
 - proper time resolution
 - tagging
- Sensitivity studies at LHCb,ATLAS,CMS
- Conclusions and prospects

Introduction (I)

• The phase Φ arising from interference between B decay with and without mixing is a sensitive probe of New Physics:

 $\Phi = - \arg(\lambda_f)$ $\lambda_f = q/p A_f / A_f = \eta_f e^{-i(\Phi M - 2\Phi D)}$

- Bs $\rightarrow J/\psi \phi$ is dominated by a tree:
 - \rightarrow NP may enter in the box

Introduction (II)

• The observable weak phase is: $\Phi = \Phi^{SM} + \Phi^{NP}$

♦ In the Standard Model is small.....

 $\Phi^{\rm SM}(\text{Bs} \rightarrow J/\psi \phi) = 2 \arg(V_{ts}^* V_{tb}) - 2 \arg(V_{cs}^* V_{cb}) = -2 \beta s \cong o \ (\lambda^2)$

$$\begin{split} V_{\rm CKM} &= \\ \begin{pmatrix} 1 - \frac{1}{2}\lambda^2 - \frac{1}{8}\lambda^4 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda + \frac{1}{2}A^2\lambda^5[1 - 2(\rho + i\eta)] & 1 - \frac{1}{2}\lambda^2 - \frac{1}{8}\lambda^4(1 + 4A^2) & A\lambda^2 \\ A\lambda^3[1 - (1 - \frac{1}{2}\lambda^2)(\rho + i\eta)] & -A\lambda^2 + \frac{1}{2}A\lambda^4[1 - 2(\rho + i\eta)] & 1 - \frac{1}{2}A^2\lambda^4 \end{split}$$

.... and well known:

 $\Phi^{\text{SM}}(\text{Bs}\rightarrow J/\psi \phi) = -2 \beta \text{s} = -0.0368 \pm 0.0017 \text{(CKMFitter, summer07)}$

• In presence of New Physics: $\Phi(Bs \rightarrow J/\psi \phi) = -2\beta s + \Phi^{NP}_{M}$

6

New Physics in Bs mixing?

◆ Results from Tevatron (tagged analysis): a brief history....

~6 months ago

New Physics in Bs mixing?

 New combined CDF and D0 iso-CL regions, after removal of strong phases constraint:

New Physics in Bs mixing?

♦ CDF increases the analyzed data sample $(1.3 \text{ fb}^{-1} \rightarrow 2.8 \text{ fb}^{-1})....$

~1 months ago

.....and consistency to SM decreases from $15\% \rightarrow 7\%$ \Rightarrow situation is getting more and more interesting.....

<u>CP violation in B $\rightarrow J/\psi \phi$ decay</u>

Bs→ J/ $\psi(\mu\mu)$ $\phi(KK)$ is a "golden" channel: → high yield (BR~3x10⁻⁵), clean signature

but it is a "complex" channel:

 \rightarrow two particles decaying in three final states!

Two particles:

 $| \mathbf{B}^{0}_{S,L} \rangle = p | \mathbf{B}^{0}_{S} \rangle + q | \mathbf{B}^{0}_{S} \rangle$ Light, CP-even, short lived in SM $| \mathbf{B}^{0}_{S,H} \rangle = p | \mathbf{B}^{0}_{S} \rangle - q | \overline{\mathbf{B}^{0}_{S}} \rangle$ Heavy, CP-odd, long lived in SM

<u>Three final states:</u>

- $J/\psi \phi$ in S-wave CP-even, A_0
- $J/\psi \phi$ in D-wave CP-even, A_{\parallel}

 $J/\psi \phi$ in P -wave – CP-odd, A

The three final states need to be statistically separated through an angular analysis

<u>CP violation in B $\rightarrow J/\psi \phi$ decay (II)</u>

• Decay rate is 3 independent decay amplitudes: $A_0, A_{\parallel} = CP$ -even, $A_{\perp} = CP$ -odd which evolve in time with a frequency Δms :

→ these amplitudes are a function of time, decay angles $w = (\theta, \phi, \psi)$, and parameters ΔΓs, 2βs, Δms, Γs, $\delta_{\parallel} = arg[A_{\parallel}], \delta_{\perp} = arg[A_{\perp}], R_0, R_{\perp}$

$$\begin{split} d^{4}\Gamma(t, \mathbf{w})/dt \ d\mathbf{w} &\propto |A_{0}|^{2} T_{+} f_{1}(\mathbf{w}) + |A_{\parallel}|^{2} T_{+} f_{2}(\mathbf{w}) + \\ &+ |A_{\perp}|^{2} T_{-} f_{3}(\mathbf{w}) + |A_{\parallel}| \ |A_{\perp}| U_{+} f_{4}(\mathbf{w}) \\ &+ |A_{0}| \ |A_{\parallel}| \cos \delta_{\parallel} T_{+} f_{5}(\mathbf{w}) \\ &+ |A_{0}| \ |A_{\perp}| V_{+} f_{6}(\mathbf{w}) \end{split}$$

fi(1,..6) encodes the different angular distributions T+,T-,U+,V+ encode the time dependence

◆ The measurement is an analysis of time-dependent angular distributions:

 \Rightarrow The amplitude of the oscillation is the phase 2 β s we are looking for....

<u>CP violation in Bs→J/ψ ∳ decay (III)</u>

$$\begin{split} d^{4}P(t, \mathbf{w})/dt \ d\mathbf{w} &\propto |A_{0}|^{2} T_{+} f_{1}(\mathbf{w}) + |A_{\parallel}|^{2} T_{+} f_{2}(\mathbf{w}) + \\ &+ |A_{\perp}|^{2} T_{-} f_{3}(\mathbf{w}) + |A_{\parallel}| \ |A_{\perp}| \ U_{+} f_{4}(\mathbf{w}) \\ &+ |A_{0}| \ |A_{\parallel}| \ \cos \delta_{\parallel} T_{+} f_{5}(\mathbf{w}) \\ &+ |A_{0}| \ |A_{\perp}| \ V_{+} f_{6}(\mathbf{w}) \end{split}$$

 $P \rightarrow VV$ $(U^+, V^+ \rightarrow U^-, V^- \text{ for } P \rightarrow \overline{P})$

terms with ∆ms dependence flip sign with initial Bs flavor → disappear summing Bs+Bs (untagged strategy) →Still some sensitivity to lsin(2βs)l and lcos(2βs)l (4 fold ambiguity)

12

 $T_{\pm} = e^{-\Gamma t} \left[\cosh(\Delta \Gamma t/2) \mp \cos(2\beta s) \sinh(\Delta \Gamma t/2) \right]$ $\mp \eta \sin(2\beta s) \sin(\Delta M s t) \quad \eta = +1 \ (-1) \ \text{for } P \ (P)$

 $U_{\pm} = \pm e^{-\Gamma t} [\sin(\delta_{\perp} - \delta_{\parallel}) \cos(\Delta M s t)$ - $\cos(\delta_{\perp} - \delta_{\parallel}) \cos(2\beta s) \sin(\Delta M s t)$ $\pm \cos(\delta_{\perp} - \delta_{\parallel}) \sin(2\beta s) \sinh(\Delta \Gamma t / 2)]$

 $V_{\pm} = \pm e^{-\Gamma t} [\sin(\delta_{\perp}) \cos(\Delta Ms t) - \cos(\delta_{\perp}) \cos(2\beta s) \sin(\Delta Ms t) \\ \pm \cos(\delta_{\perp}) \sin(2\beta s) \sinh(\Delta\Gamma t / 2)]$

ATLAS/LHCb: tagged analysis CMS: untagged analysis \Rightarrow no sensitivity on 2 β s presented today

<u>CP violation in Bs $\rightarrow J/\psi \phi$ decay (IV)</u>

Experimental factors that can affect the amplitude of the oscillations:

- \rightarrow imperfect tagging: D²=(1-2 ω)²
- \rightarrow proper time resolution: exp(-0.5* $\sigma_t^2 \Delta ms^2$)
- \rightarrow poor knowledge of the angular and proper time acceptances
- \rightarrow background contamination

Key ingredients for sensitivity:

1. Large signal yield;

 \rightarrow L, production cross section, trigger efficiency, acceptance

tagging B

Bs

2. Good momentum resolution:

 \rightarrow B_s mass window defines the amount of background contamination

3. Good PID capability

 \rightarrow to control background and for tagging

4. Excellent Proper Time resolution

 \rightarrow to follow the B_s fast oscillations

5. High tagging performance

 \rightarrow high tagging efficiency, low and well known mistag

6. Good control of proper time and angular acceptances

 \rightarrow to avoid heavy systematic biases.

<u>Luminosity, Cross section, Trigger</u>

3) Trigger: di-muon line

Pythia production cross section

eta of B-badco

	L0(1) pt cut	HLT pt-cut	HLT-µ rate	η of b-hadron
	[GeV/c]	[GeV/c]	[Hz]	
ATLAS (2μ)	pt(µ1)> 6	pt(µ1) (µ2)>6 (4)	~few Hz	Large gain from lower p_
CMS (2µ)	pt(μ)> 3	pt(µ)> 4	~few Hz	From From Fr
LHCb (2µ)	Σpt(μμ)> 1.3 GeV/	c no IP cut, no pt cut	t ~ 600 Hz	

ATLAS/CMS run at higher L but with higher pt thresholds (lower & on signal)

Offline Selection

Cut based selection for the three experiments:

 \rightarrow PID, pT of decay products, vertex χ^2 , pointing, b-vtx displacement (ATLAS/CMS) Main experimental features:

 \rightarrow MuonID capability is similar for the three experiments:

 $\rightarrow \epsilon(\mu \rightarrow \mu) = 90\%$ for $\epsilon(hadron \rightarrow \mu) \sim 1\%$ (CMS: $\epsilon(\mu \rightarrow \mu)$ depends on η, pT)

 \rightarrow LHCb has a higher hadron PID capability (thanks to RICHs!)

 $\rightarrow \epsilon(K \rightarrow K) \sim 88\%$ for $\epsilon(\pi \rightarrow K) \sim 3\%$

 \rightarrow LHCb has better momentum resolution:

 $\rightarrow \delta(p)/p \sim 0.3-0.5\%$ (ATLAS/CMS: 1-2%)

But ATLAS/CMS work with higher pt threshold: \Rightarrow less combinatorial background.....

Signal Yield and Background rate

ATLAS/CMS use B_s lifetime related cuts:

 \rightarrow main background is long-lived, mainly b \rightarrow J/ ψ X (with some B \rightarrow J/ ψ K*) LHCb does not use B_s lifetime related cuts:

 \rightarrow main background is prompt (mainly J/ ψ prompt + combinatorics)

10% long-lived]

THCP LHCb: Proper Time and Angular Acceptance

LHCb strategy:

Trigger and select events without biasing -

as much as possible - proper time and angular distributions....

A

HCb HCp LHCb: Proper Time and Angular Acceptance

Proper time and Angular acceptances are ~flat in MC

⇒ MC acceptance in data can be checked by using the high statistics $B_d \rightarrow J/\psi K^*$ sample (~650 kEvents/year)

 \Rightarrow same P \rightarrow VV transition and parameters well known from Babar [Phys.Rev.D 76, 031102, 2007]

Lifetime biased selection (already at HLT level)

less background (dominated by long lived b→ J/ψ X) But non negligible proper time/angular acceptance ⇒ dominant systematics (for the time being)

ATLAS: e, μ , Qjet (OS). $\epsilon D^2 = 4.6\%$

CMS: ongoing

LHCb: e, μ , K, vertex charge (OS) + kaon (B_s) (SS). ϵ D² = 6.2 %

	$\varepsilon_{\rm eff} = \varepsilon_{\rm tag} \ (1-2\omega)^2 \ [\%]$	$\mathbf{e}_{tag}[\%]$	ω [%]	
Muon	0.75 ± 0.05	6.2	32.6	<i>LHCb</i>
Electron	0.45 ± 0.04	2.8	29.9	гнср
Kaon opp. side	1.49 ± 0.07	15.3	34.4	
Kaon same side	2.13 ± 0.09	25.5	35.6	
Q vertex	1.14 ± 0.07	43.3	41.9	
Combined	6.18 ± 0.14	56.6	33.3	

21

 \Rightarrow SS : Bs \rightarrow Ds π

OS mistag extraction from Bd $\rightarrow J/\psi$ K* asymmetry

Proper Time resolution:

Proper Time resolution (calibration):

	ATLAS [pixel]	CMS	LHCb [VELO]		
Surface N.channels	65 m^2 6M	210 m ² 66 M	0.23 m ² 170 k		
[µm] Distance to beam	50(rø)x400(z) 4.4 cm	100(rφ)x150 4.4 cm	0.8 cm		
σ _τ [fs]	~83	~77	~40		
$\sim 50 \mu m \qquad \sim 150 \mu m \qquad \mu \qquad \mu \qquad $					
LHCh	d~ 1 cm	K	ζ + φ		

нср

Sensitivity Studies

Due to limited MC statistics

- 7 pb⁻¹ of inclusive J/ $\psi(\mu\mu)$ for LHCb, 20 pb⁻¹/50pb⁻¹ of b \rightarrow J/ $\psi(\mu\mu)X$ for ATLAS/CMS we use the full Monte Carlo to estimate all the relevant quantities:

- yield, background fraction, mass, proper time/ angle distributions, resolutions and acceptances and plug them in hundreds of toy MC to estimate the sensitivity to 2 βs (and the others parameters), through an unbinned maximum likelihood fit:

- 6 observables: proper time, 3 angles, tagging answer =0,+1,-1, mass

- 8 physical parameters: 2 β s, $\Delta\Gamma$ s, Γ s, , R_{\perp} , $R_{_0}$, $\delta_{_{\perp}}$, $\delta_{_0}$

- + detector parameters (resolutions, acceptances, tagging)

Parameters	Input	sensitivity
$\Delta\Gamma_{\rm s}$	0.084 [ps ⁻¹]	0.008
$\Gamma_{\rm s}$	0.696 [ps ⁻¹]	0.003
R ₀	0.56	0.004
\mathbf{R}_{\perp}	0.233	0.005
2β _s	0.0368	0.030
δ ₁₁	-2.93 [rad]	0.07
δ_{\perp}	2.91 [rad]	0.10

Results of 200 Toys, event yield for 1 nominal year (L~2 fb⁻¹) tagged and untagged events fitted simultaneously

Sensitivity Prospects with 2009 data:

Assume that in 2009 run LHCb collects 0.5 fb⁻¹, ATLAS/CMS: 2.5 fb⁻¹:

	ATLAS	CMS	LHCb
L[fb ⁻¹]			
¹ /4 of nominal year	2.5	2.5	0.5
Yield[untagged]	23 k	27 k	28.5 k
B/S	0.18	0.25	2
	dominated by	dominated by	dominated by
	b→J/ψ X	b→J/ψ X	prompt background
Flavor Tagging (ED ²)	4.6%	N/A	6.2%
σ(τ) [fs]	83	77	40
σ(2βs) ^(*)	0.16	N/A	0.06
$\sigma(\Delta\Gamma s/\Gamma s)/(\Delta\Gamma s/\Gamma s)^{(*)}$	0.45	0.28	0.17

^(*)we assume $\Delta\Gamma$ s/ Γ s~0.1, -2 β s ~0.04

BSM effects down to the level of SM can be seen already with 2009 data

Systematic Studies: LHCb (I)

 \Rightarrow sensitivity on 2 β s strongly depends on mistag as ~ $(1-2\omega)^2$

Systematic Studies: LHCb (II)

Most critical parameters are mistag and proper time resolution \Rightarrow sensitivity on 2\beta goes as ~ (1-2\omega)² exp (- $\Delta m_s^2 \sigma^2(\tau)/2$)

Systematic Studies: CMS

Table 18: List of systematic uncertainties with effect on the measurements.

Source	$ A_0(0) ^2$	$ A_{ }(0) ^2$	$ A_{\perp}(0) ^2$	$\bar{\Gamma}_s$ [ps ⁻¹]	$\Delta \Gamma_s / \bar{\Gamma}_s$
Bckg. distrib.	0.0034	0.0011	0.0045	0.0043	0.0059
S/B ratio	0.0037	0.0001	0.0024	0.0025	0.0055
Resolution	0 4 0		2 4 3	0.00060	0.0045
Ang. distortion	0.0143	0.0061	0.0082	0.00083	0.0010
$c\tau$ distortion	0.0016	0.00073	0.0023	0.0221	0.0146
Alignment	0.00012	0.00042	0.00055	0.00040	0.0014
Total	0.0152	0.0063	0.0099	0.0227	0.0173

Main systematics on Γ s, $\Delta\Gamma$ s at CMS comes from evaluation of proper time acceptance

Conclusions and Prospects

Simulations show that LHC has a big potential to improve 2β s sensitivity already with 2009 data sample.....

	ATLAS	CMS	LHCb	CDF *)	D0 *)
L[fb ⁻¹]	2.5	2.5	0.5	1.3	2.8
Yield [untagged]	~23k	~27k	~33k	~ 2k	~2k
2βs sensitivity	0.16 ⁺⁾	not yet done	0.06 ⁺⁾	[0.32,2.82]@68%CL	0.57 ^{+0.24} _{-0.30}
σ (ΔΓs/Γs)/(ΔΓs/Γs)	0.45	0.28	0.17	0.75	0.50
[for ΔΓs/Γs~0.1]				*) published results	*) published results

⁺⁾ assuming SM value

...potential to be realized in real life:

working hard at present to develop methods to extract quantities

(resolutions, mistag, acceptances, etc.) from data using control samples

SPARES

CMS: angular acceptances

- full MC
- theory corrected for acceptance
- acceptance

Ζθ

X

For larger time the CP-odd behaviour becomes dominant, especially for large $\Delta\Gamma$

CP-even: $e^{-\Gamma_L t} \cos^2 \theta$, CP-odd: $e^{-\Gamma_H t} \sin^2 \theta$

Since $\tau_{H} > \tau_{L}$ we see more CP-odd as time increases

Present Sensitivity (a brief history)

<u>6 months ago:</u>

CDF : tagged analysis with 1.35 fb⁻¹ Feldmann-Cousin approach: $2\beta s = [0.32, 2.82] @ 68\%$ CL $\Rightarrow 1.5 \sigma$ consistency with SM (p=15%) [PRL 100, 161802 (2008)] D0: tagged analysis, 2.8 fb⁻¹, strong phases from Bd $\rightarrow J/\psi$ K* $2\beta s = 0.57^{+0.24}_{-0.30}$ (stat) $^{+0.07}_{-0.02}$ (syst) $\Rightarrow 1.8 \sigma$ consistency with SM (p=6.6%) [arXiv:0802.2255 (hep-ex)] UTFit Coll. : $\Rightarrow 3.7 \sigma$ evidence for new physics [arXiv:0803.0659] 1 month ago:

ICHEP08: CDF/D0 combination presented after the removal of strong phases constraint $\Rightarrow 2.2 \sigma$ consistency with SM

<u>1 month ago:</u>

CDF: updated result with 2.8 fb⁻¹ (without SS tagging)

 \Rightarrow consistency with SM degrades 1.5 $\sigma \rightarrow$ 1.8 σ (CDF alone, Public Note 9758)

Angular resolutions

+ angular resolution of $B_s \rightarrow J/\psi(\mu\mu)\phi$ unified selection = (reconstructed angle - true angle)

	Theta	Phi	Psi	
DC04	0.019	0.019	0.015	
DC06	0.033	0.033	0.024	

- Does not affect β_s sensitivity
 - Even if 2 times worse in real data

LHCb Performance with Lifetime Biased Selection, Monte Carlo production of 2004:

 $BR^{vis}[B_s \rightarrow J/\psi(\mu\mu)\phi(K^+K^-)] = (30.9 \pm 11.0) \times 10^{-6}$

"Easy" trigger on muon

- Trigger efficiencies w.r.t. offline selected events
 - L0: 93.5%
 - High Level Trigger: 84.9%
 - Total: 79.4 %

Reconstruct J/ $\psi \rightarrow \mu\mu$; $\phi \rightarrow K^+K^-$; standard PID/kinematical cuts

 B_s mass resolution ~14MeV

Untagged yield ~130k / 2fb⁻¹

 $B_{bb}/S \sim 0.12$, long-lived

tagging power: $\epsilon D^2 = 6.6\%$ ($\epsilon \sim 57\%$, $\omega \sim 33\%$)

Nominal conditions:

HLT rate	Event type	Physics
200 Hz	Exclusive B candidates	B (core program)
600 Hz	High mass di- muons	J/ψ, b→J/ψX (unbiased)
300 Hz	D* candidates	Charm (mixing & CPV)
900 Hz	Inclusive b (e.g. b→µ)	B (data mining)

Fit distributions for δ_{+}

Figure 12 Fit distributions for δ_1 . In this case $\delta_1 = \pi/4$ and $\delta_2 = 3\pi/2$. Shown are (i) central value (ii) Minuit error (iii) pull distribution (iv) 5 different LL scans.