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Theoretical Review: B → Xsγ Spectrum and Moments

Plan of the talk:

Why are we interested in the B → Xsγ spectrum?

Experimental measurements and OPE-based fit to moments

(Benson, Bigi & Uraltsev, Buchmüller & Flächer)

Approaches to resummation in B̄ → Xsγ

Multi Scale OPE (Becher & Neubert)

Dressed Gluon Exponentiation (Andersen & Gardi)

Resum or not? (Misiak, arXiv:0808.3134)

Operator-dependent spectrum (Andersen & Gardi)

New non-perturbative effects (Neubert, Lee & Paz

hep-ph/0609224)
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moments and spectra - why

New physics is in the total width, so why

is the spectrum interesting?

deal with kinematic cuts:

comparing the measured

B(Eγ > Ecut) with Ecut >∼ 1.8 GeV

to the computed “total” width

use B̄ → Xsγ data

to determine mb, µ2
π (with b → c)

challenge and improve

our understanding of QCD
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The measured moments

Agreement between independent measurements.

Moments with high cuts are well measured!
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How is the data used today?

OPE based fit in the “kinetic scheme” is used to extract
mb and µ2

π, combined with b → c moments fit (Buchmüller
and Flächer)

Branching Fraction data is extrapolated from
B(Eγ > Ecut) with Ecut ∼ 1.8 − 2 GeV to Ecut = 1.6 GeV
based on this fit:
∼ 10% effect

The gap between Ecut > 1.6 GeV and “total” is left to
theorists: only a few percent.
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The “kinetic scheme” fit

What ‘theory’ goes into it?

(Benson, Bigi, Uraltsev)

Operator Product Expansion

OPE doesn’t apply at high cuts:

need a “shape function”.

(Neubert; Bigi et al.)

computed relation between the

shape function parameters –

fixed by the first two

shape-function moments – and

the first two Eγ moments

perturbation theory to O(α2
sβ0)
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Branching fraction extrapolation factors

Rcut =
B(Eγ > Ecut)

B(Eγ > 1.6 GeV)
based on the “kinetic scheme” fit
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Branching fraction extrapolation factors

This is important, but not enough...

We need to extrapolate to “total”, not to 1.6 GeV

We also need relaible predictions for the spectrum above
2 GeV — the good data is there! — but there one cannot
ignore the Sudakov logarithms, the dominant corrections
near the endpoint.

To know the spectrum we need more theory input!
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The moments with high cuts are well measured

The BF fit uses only moments with cuts Ecut ≤ 2.0 GeV.

How can we use the well-measured high-cut moments?
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What other theory input do we have?

We know a lot more (in perturbation theory!)

Important contributions are known to NNLO, in particular the

O7 − O7 spectrum

(Melnikov & Mitov, Asatrian et al., Blokland et al., . . .)

The dominant corrections near the endpoint, Sudakov

logarithms: known to all orders with NNLL accuracy.

(Gardi, Becher & Neubert)

BLM corrections to O7 − O7 spectrum: all orders.

Yet, it is non-trivial to exploit this knowledge,

even to get a precise estimate for T ≡ B(Eγ>1.6 GeV)
B(Eγ>1.0 GeV)

Misiak et al. - fixed order perturbation theory 1 − T = 3.5%

Andersen & Gardi - resummation (DGE) 1 − T = 1.3% − 2%

Becher & Neubert - resummation (MSOPE) 1 − T = 3% − 13%
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Factorization in inclusive decays (Korchemsky & Sterman ’94)

Consider the region of jet kinematics: ∆ = mb − 2E0 ≪ mb

ΓPT(E0) = H(mb)J(
√

mb∆) ⊗ S(∆)

Jet

Quark  distribution

Hard Hard

 B meson
In PT: on−shell b quark

Off−shell
b quark

Light
quark

mb

Λ

UV

mb

∆ 

∆ 

Hierarchy of scales =⇒ Factorization =⇒ Sudakov Resummation:

Hard: Jet: Quark Distribution — Soft:

mb ≫ mjet =
√

mb∆ ≫ ∆
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Multi–scale OPE: Sudakov Resummation (NNLL)

Γ(E0) =
G2

F α

32π4
|VtbV

∗
ts|2 m2

b(µ)|Hγ(µ)|2
∫ ∆

0
dp+(mb − p+)3

×
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0
dω mb J(mb(p+ − ω), µ) S(ω, µ) ,

Γ(E0)

Γ(0)
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×
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i
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e−γEη
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×
[

p3

( ∆
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)

− η(1 − η)

6

µ2
π

∆2
+ . . .

]

+ δF (E0),

η = 2aΓ(µi, µ0) > 0 p3(δ) = 1 − 3δη
1+η

+ 3δ2η
2+η

− δ3η
3+η
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Multi–scale OPE: results

Scale dependence in two different matching procedures (shifting
O(∆/mb) terms between the resummation and the residual δF (E0)):
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Significant dependence on the lowest separation scale µ0 ≃ ∆:
large subleading logarithmic corrections to the soft function.

High sensitivity to the matching procedure, dealing with terms that
are suppressed by powers of ∆/mb near the endpoint — but are not
small away from the endpoint.
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Should we then give up resummation?

Misiak sais: yes!

fixed order perturbation theory is more reliable.

I say: no!

The solution to both problems encountered in Becher & Neubert

analysis (hep-ph/0610067), namely

large subleading logaritmic corrections to the soft function

sensitivity to the matching procedure (dealing with terms that

are suppressed by powers of ∆/mb near the endpoint — but

are not small away from the endpoint).

has been given in my paper with Andersen (hep-ph/0609250).
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Factorization in inclusive decays: moment space

Define N such that large N probes jet kinematics mb − 2Eγ ≪ mb:

ΓPT
N ≡

∫ mb/2

0

dEγ
1

ΓPT
tot

dΓPT

dEγ

(
2Eγ

mb

)N−1

=H(mb) J(m2
b/N ; µ)SPT(mb/N ; µ)

︸ ︷︷ ︸

Sud(N,mb)

+O
(

1

N

)

Jet

Quark  distribution

Hard Hard

 B meson
In PT: on−shell b quark

Off−shell
b quark

Light
quark

mb

mb N

mb

Λ

UV

N

Hierarchy of scales =⇒ Factorization =⇒ Sudakov Resummation:

Hard: Jet: Quark Distribution — Soft:

mb ≫ mjet =
√

mb∆ ≫ ∆

Moments mb ≫ mb/
√

N ≫ mb/N
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DGE: going beyond NNLL Sudakov resummation

DGE = internal resummation of running–coupling corrections in the
Sudakov exponent
For example, the O7 − O7 integrated spectrum

Γ(E0)

Γ(0)
=

1

2πi

Z c+i∞

c−i∞

dN

N − 1

„
2E0

mb

«1−N

H (αs(mb), N) × Sud(N, mb)

+

Z 1

x=2E0/mb

dx∆R(αs(mb), x),

Sud(N, mb) = exp

(
CF

β0

Z
∞

0

du

u

 
Λ2

m2
b

!u »
BS(u)Γ(−2u)

„
Γ(N)

Γ(N − 2u)
−

1

Γ(1 − 2u)

«

− BJ (u)Γ(−u)

„
Γ(N)

Γ(N − u)
−

1

Γ(1 − u)

«–)
,

The NNLL result can be obtained upon exapnsion to O(u2)

Sud(N, mb) is renormalization group invariant resumming subleading
logarithms beyond NNLL.

IR sensitivity of the soft function is reduced knowing the residues at
u = 1/2 — exact cancellation of pole mass ambiguity — and u = 1. – p. 16



DGE: Sudakov and Renormalon resummation

Renormalon resummation: Sudakov resummation:
running–coupling corrections,

which dominate the large–order

asymptotics of the series, n → ∞

multiple soft and collinear radiation,

which dominate the dynamics

near threshold m → 0
∑

n n! αs
n −→ soft dynamics

∑

n αs
n ln2n(m/Q)

Q k

ց ւ
jetm

Q

Dressed Gluon Exponentiation

jetm

Q
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DGE: Sudakov and Renormalon resummation

Standard Sudakov resummation: Perturbation theory vs. DGE

Left: Fixed-logarithmic accuracy Sudakov resummation – LL, NLL,
NNLL ... – does not converge well owing to large subleading
logarithms (running coupling).

Right: Fixed order perturbation theory does not converge well; each
order diverges at Eγ = mb/2, alternating between ±∞.
DGE shows stability: all large corrections have been resummed. – p. 18



Eγ moments as a function of the cut: theory vs. data
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Andersen & Gardi

good agreement between theory and data!

prospects: determination of mb and power corrections.
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Misiak: why MSOPE fails below Eγ = 1.6 GeV

Define δ = ∆/mb = 1 − 2E0/mb and consider the O7 − O7

integrated spectrum:

Γ(E0)

Γ(0)
= 1 +

αs

π
φ(1)(δ) +

(αs

π

)2
φ(2)(δ) + . . .

Split the coefficient at each order (n) into logarithmically–enhanced

and the rest:
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L (δ) + φ

(n)
N (δ)

For example for n = 1: φ(1) = φ
(1)
L + φ

(1)
N

φ
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L (δ) = −2

3
ln2 δ − 7

3
ln δ − 31

9
,

φ
(1)
N (δ) =

10

3
δ +

1

3
δ2 − 2

9
δ3 +

1

3
δ(δ − 4) ln δ.
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Misiak: why MSOPE fails below Eγ = 1.6 GeV

φ(n)(δ) = φ
(n)
L (δ) + φ

(n)
N (δ)

The results are known for n = 1, 2:
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logarithmically enhanced terms dominate only for E0 >∼ 2 GeV.

large cancellation between φ
(n)
L (δ) and φ

(n)
N (δ) all the way from

E0 = 0 to E0 ≃ 1.6 GeV

Γ(E0) ≃ E4
0 for small E0 =⇒ the cancellation occurs at all

orders! =⇒ keeping only φ
(n)
L (δ) is BAD below 1.6 GeV.
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DGE: matching to fixed order and the small Eγ limit

In DGE we match to the fixed–order expansion in moment space.
Also here there is freedom to shift O(1/N) terms between the
resummation and the residual term:

Γ(E0)

Γ(0)
=

1

2πi

Z c+i∞
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„
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+
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But we use this freedom plus additional information on the small Eγ limit
where dΓ/dEγ ∼ EJ

γ to extending the range of applicability of the
resummed result. Defining:
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there are no poles for N > −J , so the Sudakov factor would not give rise
to a tail that falls slower than EJ

γ . – p. 22



DGE: matching to fixed order and the small Eγ limit

Changing J from 0 through 4:

Between J = 0 (standard Sudakov resummation — constant Eγ tail)
and J = 3 (the correct power suppression at small Eγ)

T ≡ B(Eγ > 1.6 GeV)

B(Eγ > 1.0 GeV)
gets smaller by a factor of 2!
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Operator–dependent spectrum

Common lore: the spectrum does not depend on the

short–distance interaction.

Indeed, true to a good approximation: in parturbation theory,

not only O7 − O7, but all interference terms e.g. O2 − O7 have

a common Sudakov factor peaking near mb/2.

But considering the tail the details do matter! E.g. O2 − O2

starts off with an extra hard gluon, generating a significant

contribution at low Eγ .

– p. 24



Operator–dependent spectrum

At first sight only O7 − O7 is important
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Operator–dependent spectrum

But looking at the tail other operator contributions are not small!
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However, this is all at NLO. All but O7 − O7 start at this order, so to

have any control of the renormalization scales (αs, mc) one needs

full NNLO.

Moreover, soft and collinear radiation effects modify all spectra!
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Operator–dependent spectrum: resummation

Upon including resummation we observe that O2 −O7 and O2 −O7

are roughly as important in the peak region, while all others are

subdominant.
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Operator–dependent spectrum: resummation

Let us normalize each of the matrix elements separately, to

examine the shapes:
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So the shapes are not universal, e.g. O2 − O8 and O2 − O2. This is

important at the tail.
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Operator–dependent spectrum: resummation

Returning to the proper relative normalization, let’s look at the tail:

NLO
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Resummed
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Resummation has an impact well below 1.6 GeV:

O7 −O7 and interference terms such as O2 − O7 and O7 − O8 have a Sudakov peak
— the impact extends far below the peak.

After resummation O2 − O7 terns more nagative, and flips sign already at 1.6 GeV
(while at NLO this occurs around 1.4 GeV).

After resummation O2 − O2 becomes the largest contribution below 1.45 GeV (while
at NLO this occurs around 1.65 GeV). – p. 29



New non-perturbative uncertainties

Striking demonstration of the inapplicability of the OPE in B̄ → Xsγ:
“Enhanced Non-local Power Corrections to B̄ → Xsγ decay rate”
by Lee, Neubert & Paz

The standard derivation of the OPE relies on appling the optical
theorem.

However, in B̄ → Xsγ, in presence of Weak operators other than O7

the photon couples to hight quarks. In this case, not all cuts
correspond to the physical process of interest where the photon is
part of the final state.

Therefore, we have to live without ‘full proof’ OPE even for the fully
integrated rate. – p. 30



New non-perturbative uncertainties

Leading contribution: non-perturbative O7 − O8 interference,
involving a constituent light quark (and therefore contributes to the
asymetry between B− and B̄0)

the energetic photon emerges from an energetic light quark, thus (1)
inducing a second collinear sensitive region (2) new soft function.

Order of magnitude in total rate:
∆Γ

Γ77
∼ C8

C7
αs

Λ

mb

Numerical estimate difficult. Rough model (Vacuum Insertion
Approximation) gives 0.3% → 3%. – p. 31



Conclusions

Resummation is the key to describing the B̄ → Xsγ spectrum

For the region below 1.6 GeV completion of the NNLO

calculation is important.

Uncertainties of non-perturbative origin will remain!

OPE violating effects should be estimated and accounted for.

Both data and theory have improved: fits to moments/spectra

should be done using several different theory approaches and

over a wide range of photon energies.

Splitting the branching fraction extrapolation procedures at 1.6

GeV is sensible if different tools apply below and above. At

present it looks unnatural.

Let’s confront theory and experimental BF at Eγ > 1.8 GeV.

Exciting field, despite its advanced age (∼ 15 years) – p. 32
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