Perspectives on Flavour Physics at Hadron Machines

- LHC experiments
 - LHCb, mainly
 - → Status
 - ➔ Physics reach
 - ➔ Upgrade plans
- Future Kaon experiments

09/09/08, CKM Workshop, Roma

On behalf of the LHCb collaboration

Patrick Koppenburg

Imperial College

London

- Changed focus: No longer seeking to verify the CKM picture
- Instead look for signs of New Physics
 - → Discrepancies in measurements or unitarity triangle

- Changed focus: No longer seeking to verify the CKM picture
- Instead look for signs of New Physics
 - ➔ Discrepancies in measurements or unitarity triangle
- $(\bar{
 ho},\bar{\eta})$ fit is dominated by $\sin 2\beta$

- Changed focus: No longer seeking to verify the CKM picture
- Instead look for signs of New Physics
 - → Discrepancies in measurements or unitarity triangle
- We don't know much about constraints from trees

- Changed focus: No longer seeking to verify the CKM picture
- Instead look for signs of New Physics
 - → Discrepancies in measurements or unitarity triangle
- We could learn a lot more from rare kaon decays
 - In particular $K \to \pi \nu \overline{\nu}$

FP at Hadron Machines — 09/09/08, CKM Workshop, Roma – p. 2/27

- Changed focus: No longer seeking to verify the CKM picture
- Instead look for signs of New Physics
 - → Discrepancies in measurements or unitarity triangle
- Need very good precision on all angles and sides.
 - Precise measurement of γ
- ✓ Need B_s as well → β_s and more
- \checkmark Look for rare decays in ${\rm K}$ and ${\rm B}$
 - → Need a lot of data and a good precision

LHC Environment

- pp collider at 14 TeV
 - Inelastic cross-section about 60 mb
 - $b\bar{b}$ cross-section about 500 μb (one every 120)
- Bunch crossings at 40 MHz
- Luminosity up to $10^{34} \text{ cm}^{-2} \text{s}^{-1} \rightarrow 10^{4} \,\mu \text{b}^{-1}/\text{s}$.

→ $5 \cdot 10^6 \text{ bb}$ pairs per second

- Direction of \mathbf{b} and $\bar{\mathbf{b}}$ very correlated
 - → A 4π coverage not optimal
 - → Build a forward spectrometer
- The choice of the LHCb collaboration

b physics at Hadron Colliders

- B mesons have a long lifetime $c\tau = 0.5 \text{ mm}$ with $\overline{\gamma = \mathcal{O}(10-100)}$
 - You want to make lifetime-dependent measurements
 - → Good vertex resolution
- X Not too many pp interactions per bunch crossing
 - → Start at $2-5 \times 10^{32}$ cm⁻²s⁻¹
 - Still $> 10^5 \text{ b per second}$
 - We will reach baseline luminosity very early
- Good particle ID to fight large background

LHCb

VeLo

LH DHC

- Forward detector
- Warm magnet. Polarity can be reversed
- Good momentum and position resolution
 - Vertex detector gets
 - 3mm to the beam

P. Koppenburg FP at Hadron Machines — 09/09/08, CKM Workshop, Roma – p. 6/27

Tracker

Magnet

LHCb

P. Koppenburg

FP at Hadron Machines — 09/09/08, CKM Workshop, Roma – p. 6/27

LHCb Trigger

 Hardware-based L0 trigger: moderate p_T cuts 40 MHz → 1 MHz

P. Koppenburg

FP at Hadron Machines — 09/09/08, CKM Workshop, Roma – p. 7/27

LHCb Trigger

- Hardware-based L0 trigger: moderate p_T cuts 40 MHz → 1 MHz
- The whole data is then sent at 1 MHz to a farm of $\mathcal{O}(2000)$ CPUs
- HLT1 tries to confirm a L0 decision by matching the L0 candidates to tracks.
 → ~ 30 kHz

 HLT2 does the full reconstruction and selection of loose B candidates → 2 kHz

This is much less than the 10^5 b events per second

6

onburg ____ EP at Hadron Machines — 09/09/08, CKM Workshop, Roma __p. 9/27

Real Events

Commissioning

- All pieces are there
- We start to read out the whole detector
- We see some cosmic events
- And secondaries
- → Waiting for collisions!

Atlas and CMS

single $-\mu$ rates

 $di - \mu$ rates

12.5

15

10

7.5

10

 10^{2}

10

$\mathcal{L} = 10^{33} \,\mathrm{cm}^{-2} \mathrm{s}^{-1} \Rightarrow 5 \cdot 10^{12} \,\mathrm{b}\bar{\mathrm{b}}/\mathrm{year}$

- General purpose detectors with a b physics programme (at the beginning)
- High trigger efficiency on muon channels
 - But with high p_T cut

P. Koppenburg^{$p_T(\mu), GeV/c$} at Hadron Machines — 09/09/08, CKM Workshop, Roma – p. 10/27

Atlas and CMS

P. Koppenburg^p^{(μ), GeV/c} at Hadron Machines — 09/09/08, CKM Workshop, Roma – p. 10/27

Status and Plans of LHC

IΗ

08–10 AugSynchronisation tests, Sectors 12, 2322–24 AugSynchronisation tests, Sectors 81, 78, 1210 SepFirst circulating beam

Status and Plans of LHC

08–10 Aug
22–24 Aug
10 Sep
First circulating beam

Status and Plans of LHC

2008 data

- In 2008 expect a few pb^{-1} at 10 TeV
- Data will mostly be used to calibrate detector, exercise trigger ...
 - Do not expect too much
- But still some first measurements can be made with little data
 - Multiplicities
 - Cross sections (K^0_S , Λ , J/ψ , B)
- → 10 and 14 TeV is new territory
- These measurements will allow to understand our detectors

• $\beta_s \text{ in } B_s \rightarrow J/\psi \phi$ • $B_s \rightarrow \mu \mu$

- A_{FB} in $\mathrm{B} {\rightarrow} \mu \mu \mathrm{K}^*$
- γ measurements

${ m | B_s ightarrow J/\psi }\phi$ at LHCb

 $\phi^{SM} = -2\beta_s$: Time-dependent CP asymmetry in $B_s \rightarrow J/\psi \phi$

- B_s counterpart to β in $B_d \rightarrow J/\psi K^0$
- Tiny in the SM: $\beta_{\rm s} \sim 0.04$
- But $P \rightarrow VV$
 - need angular analysis to disentangle CP-even and CP-odd
- Very interesting results from CDF and D0. The standard model is at 7% C.L.

$\mathrm{B_s} ightarrow \mathrm{J}/\psi\phi$ at LHCb

 $\phi^{SM} = -2\beta_s$: Time-dependent CP asymmetry

- B_s counterpart to β in $B_d \rightarrow J/\psi K^0$
- Tiny in the SM: $\beta_{\rm s} \sim 0.04$
- But $P \rightarrow VV$
 - need angular analysis to disentangle CP-even and CP-odd
- Time-dependent fit with resolution 40 fs
- Expect 100k events / 2 fb^{-1}
 - ightarrow 0.03 precision on $eta_{
 m s}$

P. Koppenburg FP at Hadron Machines — 09/09/08, CKM Workshop, Roma – p. 14/27

$|\mathrm{B_s} ightarrow \mathrm{J}/\psi \phi$ in 2009

Scaling to 2009 expected luminosities

Atlas	CMS	LHCb	
2.5	2.5	0.5	
$23\ 000$	$27\ 000$	$25\ 000$	
0.30	0.33	2*	
17^{**}	14^{**}	17	Ma ري®8(
83	77	40	1.5 MeV
4.6	N/A	5.8	events/(
0.16	N/A	0.06	40
* 90% is prompt background			30
** with ${ m J}/\psi$ mass constraint			10
	Atlas 2.5 23 000 0.30 17** 83 4.6 0.16 90% is pr * with J/*	AtlasCMS 2.5 2.5 $23\ 000$ $27\ 000$ 0.30 0.33 17^{**} 14^{**} 83 77 4.6 N/A 0.16 N/A90% is prompt back * with J/ ψ mass of point back	AtlasCMSLHCb 2.5 2.5 0.5 $23\ 000$ $27\ 000$ $25\ 000$ 0.30 0.33 2^* 17^{**} 14^{**} 17 83 77 40 4.6 N/A 5.8 0.16 N/A 0.06 90% is prompt background * with J/ ψ mass constraint

SM expectation is 0.04 ± 0.01

P. Koppenburg FP at Hadron Machines — 09/09/08, CKM Workshop, Roma – p. 15/27

$|B_s \rightarrow \mu \mu|$

- Very rare but SM BF well predicted $\mathcal{B} = (3.55 \pm 0.33) \cdot 10^{-9}$
- Sensitive to (pseudo)scalar operators
 - MSSM: $\mathcal{B} \propto rac{ an^6 eta}{M_A^4}$
- Present limit from CDF $\mathcal{B} < 4.7 \cdot 10^{-8}$ (90% CL)
- Select signal in a 3D-box of mass, geometrical likelihood, PID likelihood
 - Uncorrelated variables with different control samples
 - B mass resolution $\sim 20 \text{ MeV}$

$B_s \rightarrow \mu \overline{\mu}$

- Very rare but SM BF well predicted $\mathcal{B} = (3.55 \pm 0.33) \cdot 10^{-9}$
- Sensitive to (pseudo)scalar operators
 - MSSM: $\mathcal{B} \propto \frac{\tan^6 \beta}{M_A^4}$
- Present limit from CDF $\mathcal{B} < 4.7 \cdot 10^{-8}$ (90% CL),
- With SM BF, expect 8 signal and 12 background events in most sensitive bin in 2 fb^{-1}
 - \rightarrow 3 σ evidence with 2 fb⁻¹
 - \rightarrow 5 σ observation with 6 fb⁻¹

20

Integrated Luminosity, fb⁻¹

30

- With SM BF, expect 8 signal and 12 background events in most sensitive bin in 2 fb⁻¹
 - → 3σ evidence with 2 fb⁻¹
 - → 5σ observation with 6 fb^{-1}

Atlas and CMS also contribute:

10

→ 3σ evidence with 30 fb^{-1}

1

0

Penguins rule!

• $B \rightarrow \mu \mu K^*$ very rare in the SM $\mathcal{B}(B \rightarrow \ell \ell K^*) = (1.2 \pm 1.0) \cdot 10^{-6}$ $\mathcal{B}(B \rightarrow \ell \ell K) = (0.5 \pm 0.1) \cdot 10^{-6}$

Military penguin becomes a 'Sir'

IHC

P. Koppenburg FP at Hadron Machines — 09/09/08, CKM Workshop, Roma – p. 17/27

Penguins rule!

- $B \rightarrow \mu \mu K^*$ very rare in the SM $\mathcal{B} (B \rightarrow \ell \ell K^*) = (1.2 \pm 1.0) \cdot 10^{-6}$ $\mathcal{B} (B \rightarrow \ell \ell K) = (0.5 \pm 0.1) \cdot 10^{-6}$
- Sensitive to
 - Supersymmetry,
 - Graviton exchanges,
 - Extra dimensions
- Ideal place to look for new physics

P. Koppenburg FP at Hadron Machines — 09/09/08, CKM Workshop, Roma – p. 17/27

Messages from the ${\rm B}$ factories

Belle: 170+230 $B \rightarrow \ell \ell K^{(*)}$ events in 657 \cdot 10⁶ $B\overline{B}$ [Jui-Te Wei, ICHEP 2008]

Babar: 50+60 $B \rightarrow \ell \ell K^{(*)}$ events in 384 \cdot 10⁶ BB [Aubert et al., hep-ex/0804.4412] [Aubert et al., hep-ex/0807.4119]

FB asymmetry: Not conclusive yet...

Messages from the B factories

Belle: 170+230 $B \rightarrow \ell \ell K^{(*)}$ events in $657 \cdot 10^6 \ B\overline{B}$ [Jui-Te Wei, ICHEP 2008]

Babar: 50+60 $B \rightarrow \ell \ell K^{(*)}$ events in $384 \cdot 10^6 \ B\overline{B}$ [Aubert et al., hep-ex/0804.4412] [Aubert et al., hep-ex/0807.4119]

FB asymmetry: Not conclusive yet...

Isospin: Belle and Babar disagree.

Need much more statistics \rightarrow

P. Koppenburg

${ m B_d}{ ightarrow}\mu\mu{ m K}^*$ yields with $2\,{ m fb}^{-1}$

Expected signal and background yields in 2 fb⁻¹ of data (Assuming the SM BR of $12 \cdot 10^{-7}$):

Sample	Yield	
${ m B_d}{ ightarrow}\mu\mu{ m K^*}$	7200 ± 2100	
$b \rightarrow \mu \mu s$	2000 ± 100	E E
2(b → μ)	1050 ± 250	A
$\mathrm{b} ightarrow \mu \mathrm{c}(\mu \mathrm{q})$	600 ± 200	
Background	3700 ± 300	
B/S	0.5 ± 0.2	

Irg FP at Hadron Machines — 09/09/08, CKM Workshop, Roma – p. 19/27

${ m B_d}{ ightarrow}\mu{ m K^*}$ yields with 2 fb

6

Mean = $4.01 \text{ GeV}^2/c^4$ Sigma = $0.46 \text{ GeV}^2/c^4$

q² (GeV²/c⁴)

Expected signal and background yields in 2 fb⁻¹ of data (Assuming the SM BR of $12 \cdot 10^{-7}$):

→ Resolution on A_{FB} zero : $\pm 0.46 \,\text{GeV}^2$ (12%) in 2 fb $^{-1}$

 q^2 [GeV²]

P. Koppenburg

2

experiments / 0.1 GeV²/c⁴ 000 0001 0.1 GeV²/c⁴

800

600

400

200

0

0

FP at Hadron Machines — 09/09/08, CKM Workshop, Roma – p. 19/27

CKM angle γ

- Is hardly measured
- Main constraints from $\sin 2\beta$ and $\Delta m_{\rm s}$
- Can be measured in tree decays
 - The "real" γ (no NP expected)
- Can be measured in loops

Direct and indirect determinations of $\boldsymbol{\gamma}$

P. Koppenburg FP at Hadron Machines — 09/09/08, CKM Workshop, Roma – p. 20/27

γ in Trees

Favoured $B^-{\rightarrow} K^- D^0$ and colour-suppressed $B^-{\rightarrow} K^- \overline{D}^0$

ADS method: $D^0 \rightarrow K^- \pi^+$ and doubly-Cabibbo-suppressed $D^0 \rightarrow K^+ \pi^-$

X Low rate

Large interference

GLW method: $D^0 \rightarrow CP$ eigenstate

- Large rate
- X Low interference

Dalitz analysis in $D \to K^0_S \pi \pi$

→ All analyses time independent

Method	$\sigma(\gamma)$
$B_u \rightarrow D(hh)K$	$11 - 13^{\circ}$
$B_d \rightarrow D(hh)K^*$	6 - 13°
$B_u \rightarrow D(3K\pi)K$	5 - 10°
$B_{u} \rightarrow D(K_{S}^{0}\pi\pi)K$	6 - 9°

→ Error on γ between 5° and 13° with 2 fb⁻¹

γ in Trees

Time dependent CP asymmetry in $B_s{\rightarrow}D_s^+K^-$ and $B_s{\rightarrow}D_s^-K^+$

→ Fit $B_s \rightarrow D_s K$ and $B_s \rightarrow D_s \pi$ for Δm_s , $\Delta \Gamma$, mis-tag and $\gamma + \beta_s$

$2{\rm fb}^{-1}$	Sig	B/S
$B_s {\rightarrow} D_s K$	$6.2\mathrm{k}$	< 0.4
$B_s {\rightarrow} D_s \pi$	$140~\mathrm{k}$	< 0.4

$$B_s$$
→ D_sK : 9°-12°
 B → DK : Combined ~ 5°

P. Koppenburg FP at Hadron Machines — 09/09/08, CKM Workshop, Roma – p. 21/27

$|\gamma$ in Loops

Interference of tree and penguin diagrams in $b \to u$ and $b \to d$ (s)

- $\label{eq:B} \begin{array}{l} \textbf{B} \to \textbf{hh:} \ \text{Lifetime-dependent CP in} \\ B_d \to \pi\pi \ \text{and} \ B_s \to KK \ \text{and di-} \\ \text{rect CP in} \ B \to K\pi \end{array}$
- Dalitz: analysis of $B_d \to K^0_S \pi \pi$ and $B_d \to K \pi \pi$

2 fb^{-1}	Sig	B/S
$B_d \rightarrow \pi \pi$	36 k	0.5
$B_s \rightarrow KK$	$36~{ m k}$	0.15
$B_d \rightarrow K\pi$	$140~{ m k}$	< 0.06
$B_s \rightarrow \pi K$	10 k	1.9
$B_{u} \rightarrow K\pi\pi$	$500 \mathrm{k}$	1
$B_d \rightarrow K_S^0 \pi \pi$	$40~\mathrm{k}$	TBD

$\mathbf{B} \rightarrow \mathbf{h}\mathbf{h}$ 7–10°
$\mathbf{B} \rightarrow \mathbf{K} \pi \pi ~\sim 5^{\circ}$
$\mathbf{B_s} \rightarrow \mathbf{D_s K:} 9^{\circ} - 12^{\circ}$
$\mathbf{B} \rightarrow \mathbf{DK}$: Combined $\sim 5^{\circ}$

FP at Hadron Machines — 09/09/08, CKM Workshop, Roma – p. 22/27

γ in Loops

LHCb Upgrade plans

- Expect that integrated luminosity increases linearly with time. After 10 fb^{-1} , would take >3 years to double statistics
 - Need a factor 10 increase in luminosity $ightarrow \sim 10^{33}$
 - Most of the detector can cope, efficiencies don't degrade
- X L0 saturates for hadronic channels
 - *p_T* is not a discriminating variable anymore
 - Cut on impact parameter
- → Read all out at 40 MHz
 - Most of the electronics to be replaced

P. Koppenburg FP at Hadron Machines — 09/09/08, CKM Workshop, Roma – p. 23/27

Some Upgraded Physics

	$ 10 \text{fb}^{-1} $	With upgrade
$\beta_{ m s}$	Known to 0.01 rad	Level of CKM fits
$B_s \rightarrow \phi \phi$	Search for CPV	NP reach?
γ	Measured to 2°	Below 1°
$B_s \rightarrow \mu \mu$	Observed	$\begin{tabular}{l} \mbox{Measure } B_d \rightarrow \mu \mu \end{tabular} B_s \rightarrow \mu \mu \end{tabular}$
$B \rightarrow \mu \mu K^*$	Measure A _{FB} to 7%	High precision on angular fit
D	Charm CPV to 10^{-3}	Observe CPV

- No detailed sensitivities yet
- Aim to upgrade when LHC installs triplets to reach 10^{34} , scheduled in 2013
 - Fits well with LHC plans

Some Upgraded Physics

	10fb^{-1}	With upgrade	
$\beta_{ m s}$	Known to 0.01 rad	Level of CKM fits	
$ \begin{array}{c c} \mathbf{B}_{\mathbf{s}} \to \phi\phi \\ \gamma \\ \mathbf{B}_{\mathbf{s}} \to \mu\mu \end{array} $	This programme is a factories p	complementary to B programme. $ ightarrow \mu\mu$	
$B \rightarrow \mu \mu K^*$	We will not	compete for jular fit	
D	Inclusive measure	urements	
I	Neutrals		
 No deta 	Lepton flavour i	measurements	
 R&D ha 	s •		
• Aim to upgrade means the means appear to reach to 4^{4} ,			
scheduled in 2013			
$\sim L \rightarrow$ Fits well with LHC plans			

P. Koppenburg FP at Hadron Machines — 09/09/08, CKM Workshop, Roma – p. 24/27

Rare Kaon Decays

 ${
m K}^+
ightarrow \pi^+
u \overline{
u}$ is 90% unaffected from long-distance contributions.

- SM $\mathcal{B} = 8 \cdot 10^{-11}$
- 5% irreducible error
- $\mathcal{B} = 1.47 \stackrel{+1.30}{_{-0.89}} \cdot 10^{-10}$ (E949/E787)

 ${\bf K}^0_L \to \pi^0 \nu \overline{\nu}$ is 99% unaffected from long-distance contributions.

- SM $\mathcal{B} = 3 \cdot 10^{-11}$
- 2% irreducible error
- $\mathcal{B} < 6.7 \cdot 10^{-8}$ (E391a)

Future impact of kaon physics on unitarity triangle [UTFit]

- detector. Start in 2011.
- Expect 100 events with $S/B \sim 1.5$.

P. Koppenburg FP at Hadron Machines — 09/09/08, CKM Workshop, Roma – p. 26/27

- Thanks to the B factories and the Tevatron for their wonderful work
- LHCb, Atlas and CMS ready to collect data
- Expect first results at next workshop
- LHCb upgrade and kaon experiments expected for 2011–2013

A new era in flavour physics starts tomorrow!

Further Perspectives at Hadron Colliders

Gabriel Guerrer : γ from B \rightarrow hhh at LHCb, 09 Sep 18:45 Marco Sozzi: "The well tempered Kaon", 10 Sep 10:05 Vanya Belyaev : $B_s \rightarrow \phi \gamma$ prospects, 10 Sep 11:50 Yuehong Xie : $B_s \rightarrow \phi \phi \& B_s \rightarrow K^* \overline{K}^*$, 10 Sep 16:00 Eduardo Rodrigues : *Prospects for* $B \rightarrow hh$ *at LHCb*, 10 Sep 16:20 **Patrick Robbe :** LHC Perspectives for b lifetimes, Δm , $\Delta \Gamma$, 10 Sep 18:45 Gaia Lanfranchi : Search for New Physics in $B_s \rightarrow J/\psi \phi$ at LHC, 11 Sep 09:30 **Patrick Spradlin :** $D-\overline{D}$ mixing & CP violation at LHC, 12 Sep 12:40 Serguey Sivoklokov : $B_s \rightarrow \mu \mu$ at LHC, 12 Sep 15:10 Mitesh Patel : $B \rightarrow \mu \mu K^*$ prospects at LHC, 12 Sep 17:00 **Angelo Carbone:** *Time dependent measurements of* γ *at LHCb*, 12 Sep 17:00 Andrew Powell : Measurements of γ at LHCb with ADS/GLW Strategies, 12 Sep 17:15 Guy Wilkinson : Gamma at LHCb: Dalitz fits in $B \rightarrow DK$ decays, 12 Sep 17:30

LHCh

Koppenburg FP at Hadron Machines — 09/09/08, CKM Workshop, Roma – p. 28/27

Backup Slides

FP at Hadron Machines — 09/09/08, CKM Workshop, Roma – p. 29/27

2008 data

NHC

P. Koppenburg FP at Hadron Machines — 09/09/08, CKM Workshop, Roma – p. 30/27

LHCb Vertex Locator

- 21 stations with r and ϕ strips
- In secondary vacuum and retracted during injection

LHCb Vertex Locator

- 21 stations with r and ϕ strips
- In secondary vacuum and retracted during injection

LHCb Vertex Locator

- 21 stations with r and ϕ strips
- In secondary vacuum and retracted during injection
- First tracks reconstructed during final LHC synchronisation tests

LHCb RICH

• RICH provides K/π separation using Cherenkov radiation

- Use gas and aerogel radiators
- Two detectors for different momentum ranges

P. Koppenburg FP at Hadron Machines — 09/09/08, CKM Workshop, Roma – p. 32/27

LHCb RICH

LHCb Magnet

• Warm solenoid magnet

→ needed for CP studies

- 3 Tm integrated field
- Can swap polarity

Magnet

LHCb Trackers

LHCb Trackers

Trigger Tracker: before the magnet Inner Tracker: around the beam pipe Outer Tracker: around IT

- OT are straw tubes.
 - Close to the beam pipe the occupancy is too high
- TT and IT are silicon strip detectors

Calorimetry

 Layers of lead and plastic scintillators

Preshower: Lead/scinting

HCAL

Calorimetry

- ECAL: For γ and π^0 detection, and e identification
 - Layers of lead and plastic scintillators

Preshower: Lead/scintillator

HCAL: For any hadron

- Scintillator tiles embedded in an iron structure
- The HCAL is actually only used in the trigger

LHCb Muon Detector

