$\Delta F = 2$ Observables and Fine-Tuning in a Custodially Protected Warped Extra Dimension

Monika Blanke

MPI Munich & TU Munich

CKM 2008

5th International Workshop on the CKM Unitarity Triangle Rome, Italy September 11, 2008

based on: MB, Buras, Duling, Gori, Weiler, 0809.1073

$\Delta F = 2$ in Warped Extra Dimensions

many analyses in the existing literature

Burdman, hep-ph/0205329, hep-ph/0310144; Agashe, Perez, Soni, hep-ph/0408134; Moreau, Silva-Marcos, hep-ph/0602155; Chang, Kim, Song, hep-ph/0607313; Csaki, Falkowski, Weiler, 0804.1954: . . .

What is new in BBDGW?

First complete analysis of $\Delta F = 2$ processes

- within the custodially protected RS model
- including simultaneously all $\Delta F = 2$ operators
- performing RG-running at the NLO level
- including both strong and electroweak gauge boson contributions
- considering all interesting $\Delta F = 2$ observables simultaneously
- analysing fine-tuning in flavour physics

Main Messages from BBDGW

- confirmation of generic bound $M_{KK} \gtrsim 20\,\text{TeV}$ from ε_K CSAKI, FALKOWSKI, WEILER, 0804.1954
- ② also for $M_{\rm KK} \gtrsim (2-3)\,{\rm TeV}$ agreement with $\varepsilon_{\rm K}$ possible without relevant fine-tuning
- **3** ΔM_K and ε_K are governed by KK gluon contributions
- lacktriangledown in $B_{d,s} \bar{B}_{d,s}$ electroweak KK modes equally important
- **1 tree level down-type FCNCs through Z eliminated** by custodial protection of $Zb_L\hat{b}_L$ (both $\Delta F=2$ and $\Delta F=1$)
- **1** possible **tensions in the SM** $(\varepsilon_K, S_{\psi K_S}, \dots)$ can be **solved**
- ${f O}$ ${f S}_{\psi\phi}$ and ${f A}_{
 m SL}^{
 m s}$ can be large

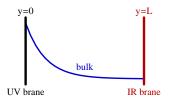
The basic RS Set-up

5D spacetime with warped metric:

Randall, Sundrum, hep-ph/9905221

$$ds^2 = e^{-2ky}\eta_{\mu\nu}dx^{\mu}dx^{\nu} - dy^2, \qquad 0 \le y \le L$$

- fermions and gauge bosons live in the bulk
- Higgs localised on IR brane


Chang et al., hep-ph/9912498 Grossman, Neubert, hep-ph/9912408 Gherghetta, Pomarol, hep-ph/0003129

The basic RS Set-up

5D spacetime with **warped** metric:

Randall, Sundrum, hep-ph/9905221

$$ds^2 = e^{-2ky} \eta_{\mu\nu} dx^{\mu} dx^{\nu} - dy^2, \qquad 0 \le y \le L$$

- fermions and gauge bosons live in the bulk
- **Higgs** localised on IR brane

Chang et al., hep-ph/9912498 Grossman, Neubert, hep-ph/9912408 Gherghetta, Pomarol, hep-ph/0003129

- energy scales suppressed by warp factor e^{-ky}
 → natural explanation of gauge hierarchy problem
- Kaluza-Klein (KK) excitations live close to the IR brane

Constraints from EW Precision Tests

S parameter:

 $M_{\rm KK} \gtrsim (2-3)\,{\rm TeV}$

Agashe et al., hep-ph/0308036

T parameter:

• without protection: $M_{\rm KK} \gtrsim 10\,{\rm TeV}$ (may be softened by heavy Higgs Casagrande et al., 0807.4937 Barbieri et al., hep-ph/0603188, . . .)

ullet with custodially enlarged gauge symmetry ullet $\sqrt{}$

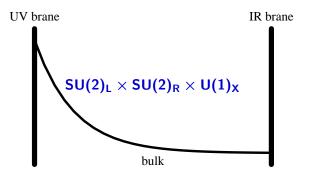
Agashe et al., hep-ph/0308036; Csaki et al., hep-ph/0308038

Constraints from EW Precision Tests

S parameter:

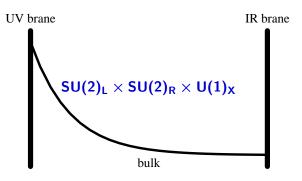
 $M_{\rm KK} \gtrsim (2-3)\,{\rm TeV}$

Agashe et al., hep-ph/0308036


T parameter:

- without protection: $M_{\rm KK} \gtrsim 10\,{\rm TeV}$ (may be softened by heavy Higgs Casagrande et al., 0807.4937 Barbieri et al., hep-ph/0603188, . . .)
- with custodially enlarged gauge symmetry → Agashe et al., hep-ph/0308036; Csaki et al., hep-ph/0308038

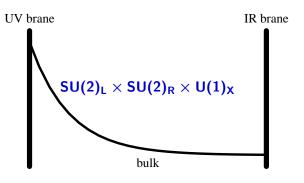
anomalous $\text{Zb}_{\text{L}}\bar{\text{b}}_{\text{L}}$ coupling: (exp.: $\lesssim 5\cdot 10^{-3})$


- corrections arise naturally at the -(1-2)% level
- protection by discrete $SU(2)_L \leftrightarrow SU(2)_R$ symmetry
 - → enlarged fermion representations

A Realistic Model in the Reach of LHC

 $+ (L \leftrightarrow R)$ -symmetric fermion representations

A Realistic Model in the Reach of LHC



$$SU(2)_R \times U(1)_X \rightarrow U(1)_Y$$
 by boundary conditions

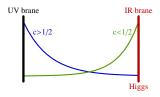
 $+ (L \leftrightarrow R)$ -symmetric fermion representations

low energy theory: $SU(2)_L \times U(1)_Y$ in the absence of EWSB

A Realistic Model in the Reach of LHC

$$SU(2)_R \times U(1)_X \rightarrow U(1)_Y$$
 by boundary conditions

$$\text{SU(2)}_\text{L} \times \text{SU(2)}_\text{R} \to \text{SU(2)}_\text{V}$$
 by Higgs VEV

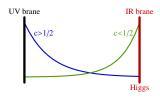

 $+ (L \leftrightarrow R)$ -symmetric fermion representations

low energy theory: $SU(2)_L \times U(1)_Y \rightarrow U(1)_{em}$

Fermion Localisation and Yukawa Couplings

zero mode profile depends strongly on bulk mass parameter c:

$$f^{(0)}(y,c) \propto e^{(\frac{1}{2}-c)ky}$$



 $c > \frac{1}{2}$: localisation around UV brane $c < \frac{1}{2}$: localisation around IR brane

Fermion Localisation and Yukawa Couplings

zero mode profile depends strongly on bulk mass parameter c:

$$f^{(0)}(y,c) \propto e^{(\frac{1}{2}-c)ky}$$

 $c > \frac{1}{2}$: localisation around UV brane $c < \frac{1}{2}$: localisation around IR brane

effective 4D Yukawa couplings: (

$$(Y_{u,d})_{ij} = (\lambda_{u,d})_{ij} \, f_i^Q \, f_j^{u,d}$$

- $\lambda_{\text{u,d}} \sim \mathcal{O}(1)$ anarchic complex 3×3 matrix
- hierarchical structure can be naturally generated by exponential suppression of f^{Q,u,d} (fermion profile on IR brane)

Flavour Violation by KK Gauge Bosons

- KK gauge bosons localised close to IR brane: $g(y) \sim e^{ky}$
- couplings to SM fermions depend on their localisation
- flavour eigenbasis:

$$\bar{\psi}_i G_\mu \psi_i \sim -i g^{4D} \gamma_\mu \sqrt{kL} (\mathbf{f}_i^{\psi})^2 + \text{const.}$$

flavour-diagonal, but non-universal!

Flavour Violation by KK Gauge Bosons

- KK gauge bosons localised close to IR brane: $g(y) \sim e^{ky}$
- couplings to SM fermions depend on their localisation
- flavour eigenbasis:

$$ar{\psi}_i G_\mu \psi_i \sim -i g^{\mathrm{4D}} \gamma_\mu \sqrt{k L} (\mathbf{f}_i^{oldsymbol{\psi}})^2 + \mathrm{const.}$$

flavour-diagonal, but non-universal!

• rotation to mass eigenbasis via $\mathcal{D}_{L,R}$: (estimate for anarchic $\lambda_{u,d}$)

$$ar{d}_L^i G_\mu d_L^j \sim -i g^{ ext{4D}} \gamma_\mu \sqrt{kL} \, \mathbf{f_i^Q} \, \mathbf{f_j^Q} \ ar{d}_R^i G_\mu d_R^j \sim -i g^{ ext{4D}} \gamma_\mu \sqrt{kL} \, \mathbf{f_i^d} \, \mathbf{f_j^d}$$

- tree level FCNCs arise!
- protected by RS-GIM mechanism

Agashe, Perez, Soni, hep-ph/0408134

Contributions to $\Delta F = 2$

KK gluons

Agashe, Perez, Soni, hep-ph/0408134 Csaki, Falkowski, Weiler, 0804.1954; BBDGW

• KK weak gauge bosons $(Z_H, Z', A^{(1)})$

BBDGW

subdominant in $K - \bar{K}$, but **competitive** in $B - \bar{B}$

- **Z boson** BBDGW
 - evaded thanks to custodial protection mechanism \rightarrow extends custodial protection to $Zd_i^j \bar{d}_i^j$ couplings

Contributions to $\Delta F = 2$

KK gluons

Agashe, Perez, Soni, hep-ph/0408134 Csaki, Falkowski, Weiler, 0804.1954; BBDGW

• KK weak gauge bosons $(Z_H, Z', A^{(1)})$

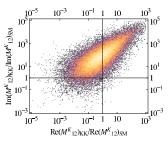
BBDGW

subdominant in $K - \bar{K}$, but **competitive** in $B - \bar{B}$

• **Z boson** BBDGW

 $\begin{array}{l} \textbf{evaded} \ \ \textbf{thanks} \ \ \textbf{to} \ \ \textbf{custodial} \ \ \textbf{protection} \ \ \textbf{mechanism} \\ \rightarrow \ \ \textbf{extends} \ \ \textbf{custodial} \ \ \textbf{protection} \ \ \textbf{to} \ \ \textbf{Zd}_L^i \ \overline{d}_L^j \ \ \textbf{couplings} \end{array}$

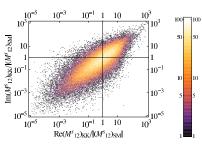
• generally: **new operators** are induced:


$$Q_{LL} = (\bar{s}\gamma_{\mu}P_{L}d)(\bar{s}\gamma_{\mu}P_{L}d) \qquad Q_{1LR} = (\bar{s}\gamma_{\mu}P_{L}d)(\bar{s}\gamma_{\mu}P_{R}d)$$
$$Q_{RR} = (\bar{s}\gamma_{\mu}P_{R}d)(\bar{s}\gamma_{\mu}P_{R}d) \qquad Q_{2LR} = (\bar{s}P_{L}d)(\bar{s}P_{R}d) \qquad (*)$$

(*) KK gluons only

 Q_{LR} : QCD (K and B) and chirally (only K) enhanced!

KK Gauge Boson Contribution to M_{12}^i



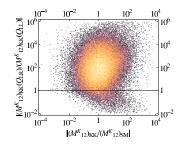
 ${
m Re}(M_{12}^K)_{
m KK} \sim {
m Re}(M_{12}^K)_{
m SM} \ {
m Im}(M_{12}^K)_{
m KK} \sim 10^2 {
m Im}(M_{12}^K)_{
m SM} \ {
m generally tension with } arepsilon_{
m K}$

Csaki, Falkowski, Weiler

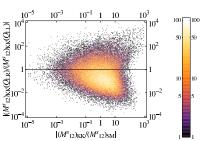
BBDGW

$B_s - \bar{B}_s$ mixing:

 $|(M_{12}^s)_{\rm KK}| \sim |(M_{12}^s)_{\rm SM}|$ Arg $(M_{12}^s)_{\rm KK} \sim \mathcal{O}(1)$


large $\mathsf{S}_{\psi\phi}$ expected

all results for


 $M_{\rm KK} \simeq 3 \, {\rm TeV}$

Operator Competition in $\Delta F = 2$

$K - \bar{K}$ mixing:

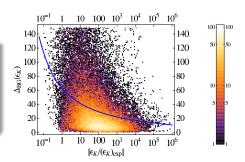
 $B_s - \bar{B}_s$ mixing:

 \mathcal{Q}_{LR} dominates by two orders of magnitude KK gluons dominant

 \mathcal{Q}_{LL} and \mathcal{Q}_{LR} are competitive EW KK modes important

(no chiral LR enhancement in B system)

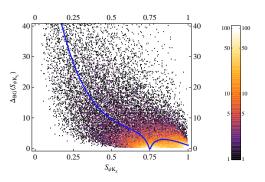
 Q_{RR} contribution generally small


BBDGW

Required Fine-Tuning in ε_K

BBDGW

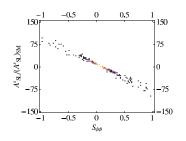
Barbieri-Giudice measure of fine-tuning:

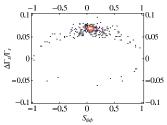

sensitivity of observable to small variation of model parameters

- generically $\varepsilon_K \sim 10^2 (\varepsilon_K)_{\rm exp}$
- ullet required tuning generically increases with decreasing $arepsilon_{\mathcal{K}}$
- $\varepsilon_{\rm K} \sim (\varepsilon_{\rm K})_{\rm exp}$ possible without significant tuning

Situation for other $\Delta F = 2$ Observables: $S_{\psi K_S}$

BBDGW


- ullet generically $f S_{\psi K_S} \sim (f S_{\psi K_S})_{SM}$ predicted
- possible tension between SM and data easily resolved


similar situation for other $\Delta F = 2$ observables

CP-Violation in $B_s - \bar{B}_s$ Mixing

after imposing existing $\Delta F = 2$ constraints:

BBDGW

- full range $-1 < \mathsf{S}_{\psi\phi} < 1$ possible → can explain recent CDF and DØ data
- strong correlation with A_{SI}^{s} (see Ligeti et al., hep-ph/0604112) $\rightarrow A_{SI}^s/(A_{SI}^s)_{SM} \sim 100$ possible
- $\Delta\Gamma_s/\Gamma_s$ can deviate significantly from SM prediction

Conclusions & Outlook

Our complete analysis of $\Delta F = 2$ processes in a custodially protected warped extra dimension showed:

- $K \bar{K}$ dominated by Q_{LR} , KK gluons
- Q_{LL} important for $B_{d,s} \bar{B}_{d,s}$, sizable electroweak KK contributions
- custodial protection for $Zb_L\bar{b}_L$ eliminates flavour violating Z coupling $Zd_L^i\bar{d}_L^j$

Conclusions & Outlook

Our complete analysis of $\Delta F = 2$ processes in a custodially protected warped extra dimension showed:

- $K \bar{K}$ dominated by Q_{LR} , KK gluons
- Q_{LL} important for $B_{d,s} \bar{B}_{d,s}$, sizable electroweak KK contributions
- custodial protection for $Zb_L \bar{b}_L$ eliminates flavour violating **Z** coupling $Zd_i^i \bar{d}_i^j$
- \bullet $\varepsilon_{\rm K}$ constraint can be fulfilled without significant tuning
- simultaneous agreement with all $\Delta F = 2$ data can be obtained
- large new physics effects in $S_{\psi\phi}$, A_{SL}^s and $\Delta\Gamma_s$ are possible

Implications for rare K and B_{d.s} decays:

Conclusions & Outlook

Our complete analysis of $\Delta F = 2$ processes in a custodially protected warped extra dimension showed:

- ullet K $ar{\mathsf{K}}$ dominated by $oldsymbol{\mathcal{Q}_{\mathsf{LR}}}$, KK gluons
- Q_{LL} important for $B_{d,s} \bar{B}_{d,s}$, sizable electroweak KK contributions
- custodial protection for $Zb_L\bar{b}_L$ eliminates flavour violating Z coupling $Zd_L^i\bar{d}_L^j$
- ε_K constraint can be fulfilled without significant tuning
- simultaneous agreement with all $\Delta F = 2$ data can be obtained
- large new physics effects in $S_{\psi\phi}$, A_{SL}^s and $\Delta\Gamma_s$ are possible

Implications for rare K and B_{d,s} decays: coming soon!

Back-up slides

Sources of Flavour Violation & Parameter Counting

Agashe, Perez, Soni, hep-ph/0408134

Flavour is violated by:

- bulk mass terms c_Q, c_u, c_d:
 3 × 3 hermitian matrices
- Yukawa couplings λ_u, λ_d:
 3 × 3 complex matrices

- 3×6 real parameters
- 3×3 complex phases
- 2×9 real parameters
- 2×9 complex phases
 - 36 real parameters 27 complex phases

U(3)³ flavour symmetry can be used to remove

- 9 real parameters
- 17 complex phases

physical flavour parameters:

27 real parameters 10 complex phases

RS versus Froggatt-Nielsen

bulk fermions in RS

$$(Y_{u,d}^{\mathsf{WED}})_{ij} \propto (\lambda_{u,d})_{ij} e^{-kL(c_Q^i - c_{u,d}^j)}$$

self-similarity along y bulk mass parameters $c_{Q,u,d}^i$ IR brane at y=L warp factor e^{-kL}

Froggatt-Nielsen symmetry

$$(Y_{u,d}^{\sf FN})_{ij} \propto (\lambda_{u,d})_{ij} \, \epsilon^{{\sf a}_i - b_j^{u,d}}$$

 $U(1)_F$ symmetry $U(1)_F$ charges $Q_F=a_i, b_i^{u,d}$ VEV of scalar Φ $(Q_F=1)$ $\epsilon=\langle H \rangle/\langle \Phi \rangle \ll 1$

- geometric interpretation of flavour symmetry
- FN formulae for masses and flavour mixings can be applied
 - \rightarrow dependence on $\lambda_{u,d}$ and CP phases made explicit

BBDGW; Casagrande et al., 0807.4937

Explicit Expressions for Masses and Mixings

quark masses:

$$m_b = \frac{v}{\sqrt{2}} \lambda_{33}^d \mathbf{f_3^Q} \mathbf{f_3^d}$$

$$m_s = \frac{v}{\sqrt{2}} \frac{\lambda_{33}^d \lambda_{22}^d - \lambda_{23}^d \lambda_{32}^d}{\lambda_{33}^d} \mathbf{f_2^Q} \mathbf{f_2^d}$$

$$m_d = \frac{v}{\sqrt{2}} \frac{\det(\lambda^d)}{\lambda_{33}^d \lambda_{22}^d - \lambda_{23}^d \lambda_{32}^d} \mathbf{f_1^Q} \mathbf{f_1^d}$$

flavour mixing matrices (responsible for FCNCs):

$$(\mathcal{D}_L)_{ij} = \omega_{ij}^d \frac{\mathbf{f}_i^Q}{\mathbf{f}_j^Q} \qquad (\mathcal{D}_R)_{ij} = \rho_{ij}^d \frac{\mathbf{f}_i^d}{\mathbf{f}_j^d} \qquad (i < j)$$

$$(\omega_{ij}^d, \rho_{ij}^d: \text{ functions of } \lambda_d)$$

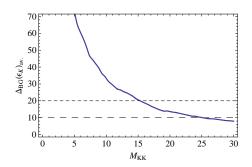
analogous formulae for the up-type quarks

New Flavour and CP Violating Effects

• $Z^{(0)}$ coupling becomes non-universal \Rightarrow tree level FCNC mediated by $Z^{(0)}$ boson

$$Z^{(0)} \bar{q}_i q_j \propto g F_i F_j rac{v^2}{M_{KK}^2}$$

- gauge KK modes are localised at IR brane
 - \Rightarrow flavour universality is broken, FCNCs arise


$$Z^{(1)} \bar{q}_i q_j \propto g F_i F_j$$

$$G^{(1)} \bar{q}_i q_j \propto g_s F_i F_j$$

- loop contributions of new heavy particles
- 9 new CP phases in the mixing matrices $\mathcal{U}_{L,R}, \mathcal{D}_{L,R}$

Generic Bound on KK Scale

BBDGW

average required tuning in ε_K , depending on M_{KK}

ightarrow generic naturalness bound: $M_{\rm KK} \simeq 20\,{
m TeV}$